[

I e wui

"

A L O A S TR SN P U IO U N A N 2 3 W A N A Y Y UN VSO LY YLl v %

Yo XN LRV AN PR XN
H
i

UNCLASSIFIED

Copy

AD-A187 452

IDA PAPER P-2062

T

9 of 131 coples

EVALUATION OF COMPUTER-AIDED SYSTEM DESIGN

TOOLS FOR SDI BATTLE MANAGEMENT/C3
ARCHITECTURE DEVELOPMENT

Dennis W. Fife, Editor

Kevin Campbell J. Bret Michael
John Chludzinski Edgar Sibley
Nelson Corcoran David Wheeler
Carlos Gonzalez Christine Youngblut
s -y ;.:: LECTE
] Oct 1987
JUL 1 11988, ctober

D

| DISTRIBUTION STATEMENT K
! Approved $+ public reloase]
w_____.?:'.u".rijz}ffidn Unlimitad .

Siaans DTN S NS R

Prepared for
Strategic Defense Initiative Organization (SDIO)

PN
1DA

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Strect. Alexandria, Virginia 22311

IﬁA Log No

i UNCLASSIFIED

. HQ 87-32835

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

AD_HI1F97 45 o—

1a

Unclassified

REPORT SECURITY CLASSIFICATION

15. RESTRICTIVE MARKINGS

1a

SECURITY CLASSIFICATION AUTHORITY

2

DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release - distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2062

S MONITORING ORGANIZATION REPORT NUMBER(S)

6éa NAME OF PERFORMING ORGANIZATION | 6 OFFICE SYMBOL

Institute for Defense Analyses

IDA DOD - lda Management Office

Ta NAME OF MONITORING ORGANIZATION

éc ADDRESS (City, Siate, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

e v s
MW 8> OFFICE SYMBOL

IORGANIZATION

Strategic Defense Initiative Organization

1801 N. B Street
Alexandria, Virginia 22311

T> ADDRESS (City, State, and Zip Code)

(it applicable)

SDIO MDA 903 84 C 0031

8¢ ADDRESS (City, State, and Zip Code)

SDIO/SYS Room 1E149
Pentagon, Washington D.C. 20301-7100

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

A
ELEMENT NO. |NO. NO.
T-R5-422

ACCESSION NO.

WORK UNIT

1

TITLE (Include Security Classification)

Evaluation of Computer-Aided System Design Tools for SDI Battle Management/C3 Architecture Development. (U)

PERSONAL AUTHOR(S) Denms W, File, RKevin Campbell, Jonn Chludzinsky, Nelson Corcoran, Carlos Gonzalez,

J. Bret Michael, Edgar Sib

2
3a TYPE OF REPORT

Final

FROM

ley, David Wheeler, Christine Youngblut.
'g—mmvm..

4
T0 r 1987 October 1

“DATE OF REPORT (Year, Month, ﬁyTF PAGE COUNT
170

j6 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD

GROUP

el UBGROUP.

software specification; requirements analysis.

I8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Strategic Defense Initiative; Battle Management/C3; TAGS; AUTO-G; DCDS;

TEAMWORK; Software Through Pictures; computer software tools; SADMT;
graphic computer-aided design; computer-aided software engineering (CASE);

19 ABSTRACT (Contisue om reverse if necessary and identify by block number)

This IDA Paper was prepared at the request of the Strategic Defense Initiative Organization. The paper documents the
findings of an evaluation on the capabilities of certain computer software/computer-aided software engineering (CASE) tools

to provide computer-aided graphic design of Battle Management/C3 for the SDIO. Each tool (of five selected on the basis of the best

available at this time), was installed at IDA. After training by vendor tool staff, an [DA team, using a hands-on design

exercise determined the merits of the tools for SDI application. A comparative summary of the tools is given relative to envisaged

SDI requirements and an extensive questionnaire is answered for each.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

B UNCLASSIFIED/UNLIMITED L3 SAME AS RPT.[3 DTIC USERS Unclassified

121a NAME OF RESPONSIBLE INDIVIDUAL 220 TELEPHONE (Include Area Code| 22c OFFICE SYMBOL
Dr. Dennis W. Fife, IDA (703) 845-3512 IDA/CSED

DD FORM 1473, 34 MAR

SECURITY CLASSIFICATION OF TilS PAGE

83 APR odition may be used until exhausted
All other editions are obsolete

N

.'u"_.\‘t A
PRt R R RIS T DAY

.;:.i:

e

UNCLASSIFIED it
o

IDA PAPER P-2062 3

EVALUATION OF COMPUTER-AIDED SYSTEM DESIGN et
TOOLS FOR SDI BATTLE MANAGEMENT/C3 2
ARCHITECTURE DEVELOPMENT et

o Dennis W. Fife, Editor NN

2 Kevin Campbell J. Bret Michael oy
John Chludzinski Edgar Sibley E’&]
Nelson Corcoran David Wheeler ®
Carlos Gonzalez Christine Youngbiut e

. —
s S ®

X } NTIS CRAZI J S KIR

' October 1987 L r ‘ b R

- 1o
%y "

ey o s e
14
]
h 3
<
A
’

|
5 |

& PN 1 '
~ IDA 6 - L :";:\

. d
INSTITUTE FOR DEFENSE ANALYSES -~ :
®
Contract MDA 903 84 C 0031 R
M Task T-R5-422 g
l‘. "

'UNCLASSIFIED h

. La
-:"\’
CaC %
1) TRy e [Y 9,8 Tf W N T o I S o T S I PR R T O N ¥ T S DU N AL .x-‘\
T AT I A N N S R TN AN I P N A T e T P T P A T S)

R T R I R W G U WL N WU PO N L g T T R S T W, W U W P U WU WUV W W o Wl M TR W U AR AN U -'.1'
o'l
ﬁ ‘|
UNCLASSIFIED pht
-
ﬁ TABLE OF CONTENTS .
i gk
EXECUTIVE SUMMARYutiiiiiiitiiainitieninrnrerneeenereusnseessosnsnsmersnsssnsnces 1
%a SUMMARY OF FINDINGS.....ccccceeeirtrrrniiereieertneriereernicesseeenneessessansneeans 4
1.0 PURPOSE AND SCOPE........ccccitiiiiitinrniniernreenenereestonerenseensnsasnenes 5
5 2.0 EVALUATION APPROACHc.cciiiiiiiiniiiiiininiicineisieinenenennenenenenns 6
g 3.0 AN ALY SIS, ittt r e et e re e et e s e e eanas 8
3.1 Graphics and User Interface.........ccoeovniuiiniieiniiirenieiriieeninereeeanenns 8
g 3.2 Systemn Representations...........cccevueieuieeinenieneenrenenersnsieenenesennenensnns 10
3.3 Data Communications Representation............coeeeveeerieneneninenenensnenenss 13
g’ 3.4 SADMT Text GENerationeeuvueerenrinreaeneunenreneseenernenneneenreannns 14
?-;» 3.5 DeSigN SUPPOTt...iiniiiiiiiiieiteie i iter e rterteeer et ereeeeerneneeanns 14
= 3.6 Design Validation and Simulation.........cccccccceeieeiiiiiiieiiiiiieniieieciinnann, 15
ﬁ 3.7 Scale of Designed SYStEIMoeeevuiuneeeiieiiineee e ee e ee e eenes 17 ‘
| 3.8 Extensibility and Adaptabilityevrevererereerersersoresseseesesesseesenen, 17 ‘%\
o bt
W 3.9 Team DeSign SUPPOTtovvvenieiiiiiiieeiiireeeee et e e e e aeaans 18 g.;]
" AN
4.0 CONCLUSIONS ... ettt e e et e e e enaeans 21 3
5 R
REFERENCESotiiiiitiiiiitieiietenerte e te et eataaea e catasasnsatnsnsnrnsnes 22 b ot
Uny]
% APPENDIX A. TOOl SUMMATIESveirureeiriieieniiienireenesiniaeesneesinee e A-1 %.:
oy 00
APPENDIX B. ToOl Evaluations.............ocvuverinenenenenininiienniinieneeneneneaenens B-1 _
E& APPENDIX C. Design Exercise -- Elevator Control.................ccoeeevunervrnnnnnnn... C-1 :
0 APPENDIX D. GlOSSAIY ...ciuennintaniieetinteneneenenensanereenronessneareneenesnonseneses D-1
o)
. >
i
c§} "_:
-.“
r{(e
3 i
E UNCLASSIFIED

. , o . , g R . . B R ~p om y - ‘l \
NN T PO T i T e A T A O o RO D A A O L O O O Qo sl S AN NSRRI R L S o

1 & + ¥ 3 > 1w e 8 s Bls 8% ' 8%2 8% %2 072 0% 970 %0 050 0°60%0 450.0°0.0'9 010 U'9 ' 0 R B R R § 00 put Ll LAt M LV ML LS St el i:;::
% B
UNCLASSIFIED gt
: .:':
TABLE OF FIGURES g
APPENDIX A. “ e
.‘ 4
e
JAGS ~ ::::
Figure 1 Schematic Block Diagram (Top Level)........cce.veveeueereeeererennnne. A3 g N
n
Figure 2 Schematic Block Diagram (Exploding INFO_SYSTEM)................ A4 N
1] » “
Figure 3 Input-Output Requirements and Timing Diagram......................... A-5 & :f
0
Figure4 1/O Parameter Table........ccormrueeeremmrmmrmmeceensseneeecsnsesnces A7 § o
]
W
Figure 5 Macro-11 Defining Communicationcveenienviiniiniinninnnnn. A-8 ® :
‘K) %3
Figure 6 Predefined Process Diagram Using MAC-11c.coovvininna.n. A-9 ;}_f' " N
Figure 7 Input Parameter Table.............c.coiiiiiiiiiiiiiii A-10 &{ ‘
Figure 8 Listing from Diagnostic Analyzer.............cooeeeeuueveeirneeeeennnnn.. A-11 =
Figure 9 Page Audit for Complete Design.........c..coivvienienreiieniniiiininnnen. A-13 \: A '
Figure 10 SBDLAIHCE ... veveveeeeeeeeeeeeeeseeeeeeeeoeeseee e eeeseseseseresss A-14 N ,;
3 A
Figure 11 Data Dictionary LiSting........c.cociuiiiiiiiiirieniniiinenieneneaaaianans A-15 ?:
ity
Figure 12 Flow Analysis LiSting.........cccviiuiniiiiiiiniiiiiiiiinieieieieeeinenns A-16 % '::3
bR
Figure 13 PPD Cross Reference Listingccoeiviiiiiniiiiiiininienenanenen. A-17 . :'.";
X
Figure 14 Simulation Blueprint Listing.......ccccccoeeviiiiiiriiininiiiiinnininnnnnnnn. A-18 ‘
W
)
-
AUTO-G N
Figure 1 Editing window with displayed document tree................c.ccueeen.n. A-20 %)
]
Figure 2 Process description for onboard controller, with hidden parts.......... A-21 W "
\
Figure 3 Process environment list............coviiiiiiiiiieiiniiiiirneeeees A-23 N
2, ‘
Figure 4 Interface document contentcoooviiiiiiiiiiniiiiiiiieiieaen, A-24 ¥ N
FIUES THMETICOMS 1.vuvveeeeeeeeeeeesoeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeeeeeeeeee. A-25 o
MRS,
3
A <Y
.
o 5
il 4) :3:
UNCLASSIFIED oo
[]
* B
U
T T D e T T O a2 R AR 0?‘.!'.:*

. 0 et wlg e? a4 e S TUR “ §aF fa¥] e '-"i‘s (WY LR .4 TN TR JG "3'.3.'.‘ -.li *

Y
: UNCLASSIFIED
SOFTWARE THROUGH PICTURES
Figure 1 IDETool Start-Up Window for STP......ccccovvirrecrmmirnereeeeneiennen A-31
Figure 2 Composite data flow and control flow diagram in edit mode of
the Data Flow Editor.....cccccoooeeeiiiriiiiirninciiiiiiiininniiiieeceennnes A-32
Figure 3 Next level decomposition of process 4 from Figure 2.................... A-34
Figure 4 State transition diagramceeevvnininieneniniieneninenreeeaanane. A-35
Figure 5 State transition tablec.ceeieriiiiiiiiiiiii e, A-36
Figure 6 Query menu of the IDEdd Data Dictionary program...................... A-37
Figure 7 Query response from IDEAd toolc.ovvevveiiiiiiiiiiniiiininnn.n.. A-38
Figure 8 Data structure diagram.......cccccccevereemmenmiiiieiiienieneereeeeenennnenn. A-39
Figure 9 Error report listing from diagram checking..................ccoceevenin.. A-40
. Figure 10 Hardware diagram drawn with PICture................ccoevvvniieninnnen.. A-42
g‘ N
R TEAMWORK
| Figure 1 Main Teamwork Window and Menu, with several subordinate
f WINdOWS OPened........c.ouvuiuiiiriiiiiiiiiieeieiiieneieeeneeeenenanen. A-47
Figure 2 Process Index for the model of an elevator control system.............. A-48
o Figure 3 Data Flow Diagram/Context Diagram for the model...................... A-49 .:_{ 'Z\):
o Figure 4 Entity Relationship Diagram...........ccocveivieiiiiiiiniiiniieniinininn.. A-50 :::.::
¢ Figure 5 Structure chart for @ Process..........eeeeererrvrrueirereerrerensnnenaanannn, A-51 .":‘.:
7 Figure 6 Process Activation Table..........c..oeviiiiiiiininiiiiiiiiiiiecnn, A-52 :« .\‘:'g
- Figure 7 State Transition DI3ZEAM.evveeeeereereereesseeseessesseesenon . A-53 ‘.3‘:;2
o Figure 8 Module Specificationcccvuiiveirrneineernniinirrnerrereneeinenns A-54 J"x
.. Figure 9 Process Specification.........cooovviiiiiiiiiiiiiiniiiniiiinr s A-55
f:’ Figure 10 Sample of consistency checking output...........ocoevevvvuiennineninnn.n. A-56
o Figure 11 Data dictionary LiStngcooveieiiiiniiiniieneiiineiienenen. A-57
Figure 12 Sample data dictionary entry..........ccccccccevmivereericerereeeeenennennn. A-58
K i
UNCLASSIFIED
A

. W o : v v, o~ o ¥ WS W W T T SN L o
G e et L R R A RS e e e A T A A v

...............

TR TO P I T u o TR TR TR TR RO T O RO PO AU PO YO ™ T ¥ 3 N g% g ety i cat “alatale’ R, " T

" 1;,

-
-

-

-

o

%
&

.....

UNCLASSIFIED

EXECUTIVE SUMMARY

Five computer software tools have been assessed for graphic computer-aided
design of Battle Management/C3 in the Strategic Defense Initiative (SDI) program. They
are: TAGS from Teledyne Brown Engineering, AUTO-G from Advanced System
Architectures (U. K.), DCDS from TRW and U.S. Army Strategic Defense Command,
Teamwork from Cadre Technologies, and Software Through Pictures from Interactive
Development Environments.

Each tool was installed at IDA and, after training by tool vendor staff, evaluated
through a hands-on design exercise. This supplemented a review of documented
capabilities, and provided more depth than is typical of software evaluations. Pertinent
excerpts of this report were provided to the tool producers prior to publication and
appropriate clarifications made from their comments.

Excluding DCDS, IDA evaluators found the tools readily useable for graphic design
in the versions provided to IDA. DCDS lacks the graphic capabilities of the others, and
only test versions of a major uncompleted upgrade were available.

The tools differ significantly in their current capabilities to represent real-time
systems, support complex software development projects, and provide for design
validation and simulation. In particular, only one, AUTO-G, now generates automatically
the textual language representation (SDI Architecture Dataflow Modeling Technique,
SADMT, formerly called SDI Architecture Process Description Language, SA/PDL) that
will be used in testbed simulation by the Strategic Defense Initiative Organization (SDIO).
AUTO-G has a demonstrable SADMT generator, with an updated package due for January
1988 delivery. TAGS is the only tool with its own demonstrable simulation capability.
This generates an Ada simulation of a designed system. TAGS also directly provides
configuration management and other design support needs. Hence, at this time, AUTO-G

1
UNCLASSIFIED

-

S p g gt gt att g |‘:‘Q

w oW, W,

A SO A W 1 Y NN o : o T N R LA A, AT A TR AT A
* X0 .10? & A ¥ JOL ’$ -\. . I."e.. ‘!‘|'..‘.'_.‘.0~.' TN X (] lk.‘ » A Al ‘) NNy . 4

o "r“v

4

'

N
.-'. |
e

x4

) " Y

AR DT O R WU VA T RINNAN R LR AT RO O UL UGS R VI OO VG
iy

G -
UNCLASSIFIED ’
i .
N
;f; and TAGS have greater capabilities and potential in areas most pertinent to SDI az

requirements. DCDS would be included also, except that its graphics interface is inferior to J

0 most leading CASE tools.

¢ Though the five tools rank among the best available, none fully meets SDI
" requirements as perceived by IDA. To illustrate, the ten capabilities listed below are ;g
::;' important requirements, but were available only for the tools named in parentheses!.)
‘,f (Where brevity is essential, Software Through Pictures is abbreviated as STP in this "
¢ .-\,hn
::‘ report.) -
R) 1. Provides effective graphics (TAGS, AUTO-G, STP, Teamwork); %
et
:\,{; 2. Represents timing requirements (TAGS, AUTO-G, DCDS); N
¥ 3. Represents process behavior formally (TAGS, AUTO-G, DCDS); £
o 4. Represents hardware allocations explicitly (DCDS); -
Ly ¥ ‘-:i
K 5. Generates SADMT representation for SDIO simulation testbed (AUTO-G); ~
b
" 6. Provides simulation for dynamic validation by designers (TAGS); 4
T
':' 7. Provides requirements traceability (DCDS);
4
g 8. Provides version identification (TAGS, AUTO-G, Teamwork); o
’i' -)
N 9 Supports configuration management (TAGS); .
K 10. Supports user-tailored graphic icons and semantics (none). 12
:’ Pl
::: A table following this summary highlights a comparative view of the tools in a (j: |
) e .
s popularized form. It is keyed by number to detailed questions about the tools, answered in
k Appendix B. Appendix B questions represent a complete statement of tool requirements v
" investigated in this evaluation. Differences in the "smiles” given to each criterion are:
. 1 The above list and the following table exclude capabilities planned for future release or available =
3 through auxiliary packages. As examples, TAGS is planning to have SADMT in 1988, and through a ‘a]
;:' separate package, RVTS, now provides requirements tracing. Version identification for STP is ,j-)
4 provided through an auxiliary package. Teamwork will have configuration management in 1988, as o
N, will STP via a separate package.
N ! t
O
N

2

7o
Sz

N UNCLASSIFIED

=
i

A

A

UNCLASSIFIED

Graphics and Editing. Panning and picking in AUTO-G are relatively difficult,
though scroll bars are being added in a future version. DCDS is much worse on panning
and has no high resolution graphics to support large, fully labeled diagrams.

Design _scmantics and support. AUTO-G provides the SADMT language.
AUTO-G, TAGS, and DCDS provide similar depth of formal specification capability. STP
and Teamwork lack formal specification of processes and timing requirements.

Team design support, TAGS provides configuration management. TAGS, STP,
and Teamwork provide locks for concurrent work by multiple designers on a single design
project or database. AUTO-G has well-developed versioning. DCDS has none of these.

Documentation and output. TAGS provides a variety of standard database reports
for design support. The others provide the basic means of output and database query,

without significant distinctions. Tool documentation is not exceptional for any, and is
outdated for DCDS.

Static diagnostics. AUTO-G provides the best form of error reports. AUTO-G and
TAGS, because of their depth of formal specification, must check syntax and semantics
more extensively. STP has no diagnostics for state transition tables2.

Simulation. Only TAGS now offers a self-standing simulation capability.

Adaptability. DCDS alone has a database extension feature that is integrated within
its textual specification language. All the tool vendors either now publish or will provide
users with the information needed to access their database. None directly supports user
modification of design icons or their semantics associated with the design database.

The IDA exercise was limited in important respects. [DA has not exercised the
tools on a large team project, and so cannot predict their stability, reliability, or productivity

2 For the July 1987 version provided to IDA; since added to current STP release.

3
UNCLASSIFIED

Y - > . y w5 T L A G T et T
WA e U A S LSO ‘o ALY .'!‘l‘- AL —‘ LA Lt At n N T) 'FV)‘

Y

A

4

.

S e 100 Gat fat et $a® 0.0 a8 ad it fal ot 'pal D"

UNCLASSIFIED

under the project stresses to be expected for SDI. To reach a final conclusion about their
relative merits for SDI use, all of them should be applied in SDI development over the next
six months. Extensions and refinements delivered by their developers also should be
monitored, since improvements now under development will change their comparative

standing.

SUMMARY OF FINDINGS

CAPABILITY (P o ix B
(1.5-1.6, 2.1-2.17)

Graphics and editing
TAGS

©O0

TAGS
©O00
Team design support
TAGS

©OO6

Documentation and output

TAGS

©e0

Static diagnostics (4.1-4.3)

TAGS
©O0O6

Simulation (8.1-8.2)
TAGS

Adaptability (6.1-6.5)
TAGS

©

LN “V-;-—' ‘~. -‘- ", -\.

AUTO-G

DCDS

©®

Design semaantics and support (3.1-3.11, 5.1-5.6)

AUTO-G
©BOO
(1.1-1.4, 7.1-1.9)
AUTO-G

©0®

(9.1-9.6)

AUTO-G

©®

AUTO-G

©O0

AUTO-G

AUTO-G

©

VLN -

W L.878.079.07F,

DCDS
©O00
DCDS

DCDsS

©0

DCDS
© ©O

DCDS

DCDS

©O

4
UNCLASSIFIED

Ll . |] T T L IO
» h- ll » \\~\\' N.'"'\“ -

STP
©O0
STP
STP
©e0
STP
STP

STP

STP

TEAMWORK

©O0

TEAMWORK

©

TEAMWORK

©G0

TEAMWORK

©©

TEAMWORK

©O

TEAMWORK

TEAMWORK

©0O

-, . f-n\-tr-

SN

\'-“\.

S
LS
4
wr ‘.’
&
~
e
o
w. 4
h“ .!‘
N
.
: s,
AN,
\- y
. L}
J
N
r
'I
F
. -l
FAY
AT
S,
)
VAA' U\
LS
In oy
e
4
o,
L

-

A
~ o
)
N
¥ L)
MR
N
W
‘,
x .
A
o
™
XN
f.'\ f‘
[y, N
]
2 b
iy
*: 'l‘
v
P
oy :
’
t !
("._' \"
‘. ::
. 3
RO,
¥
]
~ 4]
o~ M
)
ISR
v
b

v

. " v TR . _ga¥ fut ry 0 " Ayt
R R R R T UL o 2072t als’av8°a'h at"atd 2t + s’ 08" et 4at BaY §a® Bavitad pad SnY 0 14® et 8a® 9a® & v IR

TR
o\

UNCLASSIFIED

[
)
’-':'{1.‘

b
e

"

R ¢
o
wee

2
1.0 PURPOSE AND SCOPE ey
ala
This report summarizes capabilities of computer software tools that provide a NAON
computer-aided, graphic means of describing systems. The tools examined are often ;:E:f:_:
categorized as computer-aided software engineering (CASE) tools. They apply to .._'-"
decomposing and describing system functions which ultimately may be implemented by ‘\"-'.""
hardware or software. The target system's operating environment must be defined also, at ﬁ iy
least in terms of input and output interfaces. The tools do not force a particular demarcation ::f ".':
between the environment and the system under design. To a degree, they serve also as :2'5_2 "
general system engineering tools. o
IDA staff and consultants evaluated the tools by designing an elevator control ;E:EWE:
system as described in Appendix C. This report captures answers to a set of questions by ?_E\
about tool capabilities as available and used by IDA in August, 1987. The overall J:(‘-':
conclusions are meant to highlight use of the tools by design teams developing a complex, ®
s exrd

hY

real-time control system.

PR,
5
pt]
II..

4
'&-ﬂ-
T
o' E

2

Readers are assumed to have background in current software design methods and
supporting computer-aided tools, so no tutorial is given. Pertinent background references SN
are listed. An overview in Appendix A introduces each tool. Brief notes about near-future
enhancements are included also, where the tool developers provided definite information.
The next three sections describe the evaluation effort further, and provide summary

conclusions on the usability, strengths, and weaknesses of the five tools for the Strategic
Defense Initiative.

5
UNCLASSIFIED

N vatl v . el ol mbcml b R B .
Cpat a0 2V B YR 2" e 48 A LAt Y R % 2 0A by 0d' B 0.0 taf Vo Vot tal gl At b YRio” UN TN YV)/ VLY IR N o gb, 8,

B |

\X

()

.‘ul. a,.-

UNCLASS!FIED

2.0 EVALUATION APPROACH

Prior IDA work has assisted this effort with pertinent background. In January,
1987, for example, IDA sponsored a Tools Fair at which 15 vendors of CASE tools
provided briefings and demonstrations for contractors and SDIO officials [Heystek].
Except for Software Through Pictures, all of the tools examined here were presented at the
Tools Fair. IDA subsequently investigated the design formalisms underlying selected tools
[Chiudzinski], including TAGS, AUTO-G, and DCDS. IDA also has developed the
SADMT language [Linn] as a means to uniformly represent complex systems and
implement an objective and maintainable testbed for simulation and evaluation.

The objective of the effort reported here was to provide a timely assessment of the
usability of selected tools that were under consideration for near-term use in developing
SDI BM/C3 proposals. Tools were selected that offer the quality and resolution of
workstation grapiics, and that are off-the-shelf, commercial products. DCDS was
included because of its past history of use in defense projects. Available effort for the
design exercise was limited, and other tools that also might qualify were not evaluated.

Most of the choices made were subsequently identified as leading candidates by SDIO's
BM/C3 contractors.

The tools were installed at IDA, beginning with TAGS in June, 1987, with the last
one, DCDS for the IBM PC-AT, installed in August, 1987. An exercise team of two or
more IDA research staff or consultants was designated for each tool. Training was
conducted by tool vendor personnel after each tool's installation. The teams were given the
design requirements, Appendix C, and the questionnaire before beginning to use the tools.
Documentation of this report began in mid- August.

The tools were used in the manner of a system designer as the online user, rather
than the designer working offline with a tool/workstation operator. Whether a given tool,

when used directly by a designer, improves overall designer productivity, may be

6
UNCLASSIFIED

P 0 A g S T U S R A VR P R IO N W e e N '\;\',.x',-.}'\-‘\}\\}' TR NS -, "

., LR T L L AL L R LN P

(3

2

)
[

E s A

23

<

AR

AT L)
.
f.c",'-"_

=L I g

!..'

AT

¥

o,

AL ST T
rIEE

~F

Ty

@ T N
SR R i

.o‘

P

")
A N l‘.”i'. D.‘

R LW L% W LA UL

UNCLASSIFIED

debatable. The IDA evaluators advocate the pro position, but IDA did not attempt any
productivity measurements. Appendix A provides an overview of each tool, with selected

diagrams or display prints to give the flavor of its graphics. Appendix B presents the
answers to IDA questions in a side-by-side form.

55
B » W
ol 4

n
& L4

'
224

-
-

A

‘l
¥
Lol

i’
o

e e
T, .e?fj.. o

X

e,
O,

e

7
UNCLASSIFIED

V » " CT TR I PL e WG
l;.l‘lfls. . 9.1 ’)\v"' |-.C, . .

e
SR AN O T

" » - - - ’ L d - LY ERY RS BT B ENE) ' - .' - - ;
X Ot o AIOG N LR PRI e e " Gl L ATUSON LAY AN N O W s el el

UNCLASSIFIED

3.0 ANALYSIS

The following paragraphs discuss the tools relative to broadly stated requirements
perceived by IDA. Specific capabilities investigated are identified in the Executive
Summary and detailed in the questions posed and answered in Appendix B.

Dozens of CASE tools are marketed today, and commercial competition is strong.
Thus, off-the-shelf tool capabilities should be expected to change rapidly for the better. In
most cases, the IDA evaluation identified bugs or badly needed extensions, and some
developers attempted to fix these promptly. Most of the tool developers identified major
improvements planned and already underway for 1988.

3.1 GRAPHICS AND USER INTERFACE

Highly productive design with a graphic tool begins from an effective and reliable
user interface, which includes displays, menus, keying sequences, mouse usage, and other
elements dominating the designer-system interaction. Except for DCDS, all of the tools
offer well-developed and useable graphics for decomposing and describing systems.
System description is done in terms of a "design language" embodied in the graphic icons
(or text equivalents) and other tool features. The designer's composition of a description,
by selection, labeling, and interconnection of icons, creates an internal database
representation from which other tool functions and designer actions proceed.

The languages of Teamwork and Software Through Pictures are similar and based
on well-known and widely used data flow and control flow diagramming methods.
TAGS, DCDS, and AUTO-G have distinct and unique design languages, with various
similarities to common notations such as block diagrams and flow charts. The next

subsection on System Representation discusses the semantics of the design languages,
excluding the graphics and user interface.

DCDS was used in beta-test versions of its Ada implementation for VAX and IBM
PC/AT hardware. The beta-test software has many limitations or bugs, which are to be

8
UNCLASSIFIED

e
KoL LS

W~
Vs
-
%

v
IR AL
X

2é

«d
2

ed2
'f ‘f“

Y|

[

P
72

L g
o

g -
»

o

- . 7 v

&53
e

- -
-

rJ
Rl

7
T

. e '

»
U AN \.) i‘v“‘- y

AN AN W) [y i '»l!":|-'r,vv'a|=.'., W N RN NN AN AT N ..-."'n..-' oa 48, s “Bta k¢ a8yt gk Rt L ‘ay 8t

UNCLASSIFIED

overcome in the "production” version for the VAX, available in November, 1987. DCDS

is severely limited in graphics capability, compared to the other tools, but this may improve

with a proposed upgrade to Sun workstations, planned for 1988 release. The observations
¢ in this subsection do not include DCDS, because of its limitations.

None of the tools/workstations was found to be extremely easy to use, though IDA
evaluators experienced least difficulty in using Teamwork. All the tools have some non-
obvious, error-prone, or otherwise bothersome features relative to common user actions or
situations. Users adjust to these in a short time, but initially find them frustrating.

TAGS, Software Through Pictures, and Teamwork require the user to choose the
. position of most, if not all, of the graphic icons and labels in the diagrams representing a
system. IDA users experienced distinct graphic difficulties arising from the ability to
K’ position icons at will. A common difficulty was that some aspect of the internal database
description became hidden or invisible on the displayed image. This arises from user
Y actions that either overlay one object on another, or fail to delete all parts of an object. In

these cases, diagnostics from analyzing the database content may note errors that cannot be
identified from the visible diagram.

The AUTO-G software, on the other hand, automatically positions icons and text,
and redraws the display after each editing action, avoiding any hidden or overlapping
elements. Occasionally, this produces an annoyingly long response time. Also, it tends to
spread a diagram widely, which may increase the trouble of panning across a large
diagram. A repositioning feature allows a user to easily "squeeze" a diagram, but this
doesn't eliminate the need for design discipline to create only small diagrams. A user may
" suppress or “hide" chosen parts of the picture also, to concentrate on other parts.

o

TAGS is the only system which encourages small diagrams by providing only a
- single page drawing or text entry window for its display. The designer may use a
succession of pages, with off-page connectors to join flow lines for diagrams. Panning,
scrolling, and zooming are unnecessary. The other tools offer a window to a very large
drawing area for each diagram. So, user discipline is needed to avoid very large diagrams
a and extensive panning or zooming for viewing them. An AUTO-G user can limit diagram
e size and complexity through its modularity features (templates and separate documents) as
well as its hiding feature. Teamwork and Software Through Pictures users would follow ‘

! 9
UNCLASSIFIED

ISP
- : - e I I T R NG R AT T AN UL LR IO B S O
A T o B S e T s o S T St 2 S i e e S s s s W

aig ¢ v ha dta Ax Ata §¥a g g2 gVac gt AL YT aksabatat A el Yt vt At a s hatatat. fag o S08 00" Wl M E R E-L L L1 HERETRAAERER SRS AT A RO LU SL LY Lol
«
4
UNCLASSIFIED :;c,
. ")
& W
LY E:,:
‘i
\J
some rule such as "only 3 to 7 bubbles per diagram" and the usual top-down 20
decomposition technique. However, scrolling of a single diagram or table is easy with o ':::
¢,

either of them.

L
St

3.2 SYSTEM REPRESENTATIONS

A crucial issue for SDI is the extent to which a tool provides for specifying all E o
functions and attributes of a BM/C3 system in a high level, formal language. IDA 0::f
considers a formal language, rather than free text comments, as a paramount need because Q:",E .::

ot

of the importance of testing and validation for the SDI. Elements of a formal specification

can be cross-checked by computer, automatically and reliably, for consistency and § '::0‘
completeness. Text annotations and comments, though valuable for human review, only ":“
support laborious and error-prone human effort to find errors. It is difficult to describe a '§ ::::‘:
minimum set of functions and attributes that should be formally specifiable for SDI, .
without presenting a mathematical or formalized notation. To avoid the latter, two " :::l:'\
alternatives are used below. The first is a conventional, informal description of .Q: ".::
requirements for real-time, database, and artificial intelligence types of systems. The ’ .‘E::

second alternative considers the system characteristics or semantics expressible in the " »
SADMT language, which SDIO requires as a deliverable representation from BM/C3 v o
contractors. g ,»
L

All of the tools provide a way to decompose a system, hierarchically, into operating % 4.:;:
components and subcomponents. All provide one or more methods of describing as:
information transfer from one component to another. All provide for describing some \;: { ':'E
forms of control, such as the activation of one component or activity by another. All except B ". '
DCDS support a purely functional or logical decomposition approach, as opposed to a ":: :ﬁ ‘
physical one, if the designer so chooses. DCDS is the only tool that provides explicit o ,;
allocation of function to physical components, but requires this choice earlier than may be o ';."“
appropriate for some projects. \f ;'»
Only TAGS, AUTO-G, and DCDS also provide for formally specifying absolute o = .:
and relative time constraints or deadlines. This is crucial for real-time systems. e} : ‘:
~t }\ '

_®
oy
10 ’?ﬁ ,§‘.’:¢
Mo,

UNCLASSIFIED N

EANRAS

-, -

- »

R N (- L] 'y < - DR S YR Cpl S WL TR Fet s Jyn b
3 .e.'l"»'r‘. W1, 'r,l'v.l'l.l. f~ v ."'m';l. B at .h.!'n K ‘ ' ' o % A A AT ALY M ¥ <, "w %4 [20

o A e e B Pad Vel o o§ g ipd Ve tal ah ®o8 €d 19 tad oD oo N REREX KA R g » R R R R AR N ATE X

UNCLASSIFIED

TAGS, AUTO-G, and DCDS also provide for formally specifying the behavior of
system activities or processes at a detailed and algorithmic level. They include diagnostics
at the algorithmic level.

Teamwork and Software Through Pictures provide state transition diagrams or
tables, and related or alternative diagrams, such as decision tables, for specifying system
control. In theory, such diagrams or tables suffice for describing any computable function,
ignoring timing. Thus, control may be completely and formally specified with these two
tools. But, formal linking of control flow with data flow is missing. Data flows and
control flows may be viewed together on a composite flow display, but a data flow cannot
appear in a control specification table or diagram. So, the tools do not include a formal
basis (e. g., a decision.table) for specifying data flow values in relation to control flow

values. They cannot serve by themselves to formally specify the full algorithmic behavior
of a system.

The common means of specifying process behavior with these two tools is a user-
created form of structured text, say, PDL or Ada code. Both Software Through Pictures
and Teamwork provide simple, though somewhat different templates for the text entry.
The templates are produced automatically with variable and type declarations corresponding
to the input and output data flows defined beforehand by the user's data dictionary entries.
(An error in doing so for Ada enumerated data types is noted in the questionnaire for
Software Through Pictures.) TAGS, AUTO-G, and DCDS also produce compilable data
declarations from the formalized entries in their data dictionaries.

Teamwork and Software Through Pictures permit any textual description a designer
wishes to make of a process, as do other tools. These are not checked by either tool's
diagnostic analysis (because formal process descriptions are not provided within the tool)
nor otherwise processed within the tool itself. Of course, if the designer enters a formal
language text, such as Ada code or SADMT, then a separate compiler or other software
could provide syntax checking or other support.

Database applications additionally need convenient specification of the database
schema, in a form akin to the schema languages of pertinent database rhanagcment software
(DBMS). DCDS fulfills this requirement through a textual schema-like language.
Software Through Pictures and Teamwork provide the capability to specify entity-

11
UNCLASSIFIED

v

<8 0,0,

gt Tyt

(]
s

i

UNCLASSIFIED

relationship-attribute (ERA) diagrams, often used to portray database schema. Software
Through Pictures provides a command to produce a hierarchical text listing corresponding
to an ERA diagram; Teamwork does not. The text form helps to prepare a database
definition for prototyping or simulation on a DBMS package. Neither TAGS nor AUTO-G
provides a means of relating sets of data elements in the form of a schema. All the tools
would require some user-written text processing to manipulate their data dictionary content,
as dumped, into the form of a desired schema language.

None of the tools appears to have techniques especially tailored to specifying
knowledge-based software.

SADMT Semantics

SADMT requires a system's representation as a hierarchy or tree of asynchronously
operating, intercommunicating processes (computations or any other behavior). Besides a
process hierarchy, typed input and output ports, data flow interconnections, and Ada code
for process behavior description, the SADMT language provides certain specification
capabilities that are separable from the designed system specification. These are: port

structure and type constraints; message constraints; event ordering constraints; and
allocation of processes to components of stated hardware configurations (resources).

With regard to SADMT semantics, AUTO-G, TAGS, and DCDS could provide
most, but not all, of the capabilities involved from their present design languages. The
generation of a process tree from the internal database should be straightforward, though
not equally easy for each. AUTO-G, TAGS, and DCDS provide for timing and assertions,
but the specifications are embedded within the designed system specification. Depending
on a tool's internal representation, some difficulty could arise in extracting and separating
these to generate valid SADMT.

Neither AUTO-G nor TAGS provides a special means to explicitly describe
hardware configuration and resource allocations. DCDS supports explicit definition of
hardware configuration and associated functional allocations for a given system design.

Teamwork and Software Through Pictures could readily provide the process
hierarchy, which is well-matched to their decomposition approach. Both lack timing, as
already noted, as well as assertions and hardware configuration/allocation.

12
UNCLASSIFIED
O W S W W P PV W A R L O T N T W et 2 Tt e T e R W
A IR AT s Lt "{'i' e N ALRRCHL R AR o "\"F“ ey Gl Tty O

#
2;

>
-W
=

X e By 29
::. ’:.’:’ D i

il

- e - -

P IO PO O PO TUIR TOI IS TR TR T TR TR T PO PO T T P A 5 Y A Sa gta e 8% N ‘M ety As wONT KIS 1"1"“;“

B

UNCLASSIFIED

Again, all of the tools allow anything to be stated as a textual annotation, but
because comments are not processed, even for static validation, they lack forceful effect.
Automated diagnostics are the sine qua non of any specification capability. Nevertheless, it
is beneficial to be able to create such annotations as a designer recognizes a technical issue
or trade-off, or makes a decision that should be recorded. It is also useful to be able to
apply other tool capabilities to such text annotations.

3.3 DATA COMMUNICATIONS REPRESENTATION

Data communications between physically separate BM/C3 elements is as crucial to
SDI as communication between software modules. Effectiveness in representing data
communications functions is therefore an important criterion for SDI system and software
engineering tools.

Teamwork and Software Through Pictures have no explicit mechanisms for
specifying data communication interchange. All communication is shown by data flows
and data stores (where buffering and delay occurs). However, representing some aspects
of practical communication runs counter to the design philosophy inherent in data flow
diagrams (DFDs). For instance, depicting physical elements and implementation properties
is discouraged in DFD dogma. Moreover, multiple objects of the same kind typically
would not be pictured as separate processes on a DFD. Thus, point-to-point
communication between numerous elements may be difficult to describe. Showing
separate data flows between every possible communicating party also leads to very
complex diagrams, so unbuffered broadcast communication is difficult to represent with
these tools. And, once again, the lack of a formal means to tie data and control flow
together limits the capability to specify communication protocols.

TAGS and AUTO-G have well developed semantics applicable to data
communications. TAGS semantics implies an underlying (unspecified) transmission
medium without buffering or coordination. The system designer works with synchronous
communication primitives (call, listen, send, and receive), and must fully specify the
consequences (lost messages, retransmission, etc.) of a non-responding recipient. AUTO-
G assumes an underlying asynchronous, buffered transmission medium (messages may be
sent without explicit pre-coordination, but unexpected messages may be lost). For both of

o

crrle
Ll

13
UNCLASSIFIED

T AW TR A VL vy PG
St A T R AT e W radada it R L W

. oy . ed Ch Sad LR Al R
0, Wop il tpt Yad 825 V21 Tu g AR vas vl Yah ond a9 ted Yol ad s AN AN TN AT VTN Sad Vad tal ial At VAN N SOTRKTRTRUE] &

‘-~ \\‘I
E;.J)
UNCLASSIFIED o
"] U
¥
these tools, a designer would explicitly represent any physical communication facility that P
operated in a different fashion. v

DCDS provides both synchronous and asynchronous communication primitives
and means to define the performance of an external communication network.

. Rd

34 SADMT TEXT GENERATION = 3
¢

As mentioned already, AUTO-G is the only tool that is delivered with an automatic _ﬂ._. ':::‘

generator of the SADMT language, to support testbed simulation of a designed system. A "s.: ::‘

working prototype of this generator was included in the version supplied to IDA. Teledyne
Brown has stated their intent to furnish an SADMT generator with TAGS in 1988.

o
3 &
5'3‘
3.5 DESIGN SUPPORT ﬁ ‘::;3
In addition to the basic graphics and design language, a highly effective tool
provides features that expedite design work. This area addresses general productivity from - é‘
an individual designer's viewpoint, excluding graphics and user interface as such, but e :
recognizing practical aspects of design work with a given tool. ’ y
None of the tools comes with a designer's manual on how to carry out whatever - ;
design strategies the tools are built to support. Only AUTO-G had practical tutorial it (-'~
examples; others had very simple and limited examples. The IDA evaluators gained a ¥ W
distinct impression, from training and support contacts, that some tool producers have few T
personnel with strong experience in design. 3 ";.:‘
Inexperience fosters impractical notions about design, such as: designers should (or oy !
will) create entirely satisfactory specifications, start to finish, without revising or starting i :3
over. None of the tools offers automatic aid for making revisions, such as propagating
revisions from one change point to all affected definitions and diagrams. The views and :‘3‘: =]
both user-defined and automatic version identifiers of AUTO-G, however, are very helpful iy
in tracking design updates and doing major cut-and-paste revisions. TAGS has time-date 3 :.(
stamping available to track updates, but its version identifiers apply only when formal G o
configuration management discipline is invoked. Teamwork provides automatic version N "_
identifiers and time-date stamping. Software Through Pictures provides version control AN :E:
through an external package. DCDS, perhaps because of a bug, usually will not save . .
14 & ..:
h
UNCLASSIFIED . W
K -:_.
::n’

; | ; : [e AP N y o A (3. [TRTRLS. a g R”A" L O WY RO W PR e ¥
DA A KL -l'!‘l'u’l'a i, l.-'l.o (N .!0’.... ” Ql\'_l. s ;,&h’.'&', .'l- r \ I G S A A A . > 4, . s's . 2%, 4,0, 04 . 4 o

UNCLASSIFIED

incomplete and therefore syntactically invalid work. Its database translations for moving
from one phase to another pose an added penalty for backing up to a prior design stage.

All of the tools constrain the order of going about the specification effort. DCDS is
least flexible, imposing a highly ordered, start to finish method, which is enforced by its
required succession of database translations, as well as the above mentioned bug.
Teamwork and Software Through Pictures, by separating diagramming and text tools,
encourage the traditional DFD approach of going level by level, creating first a correct
diagram, then the data dictionary entries for it. AUTO-G is quite flexible. Naturally
enough, it requires process behavior to be developed top-down, but the designer can easily
move among many processes (if on the same diagram) to develop different aspects or
stages of the design at will. TAGS supports similar freedom, but by its separate tools and
specification forms (e.g., IORTD, IOPT, etc.), encourages a designer to work with one
form at 4 time.

Inconsistent interpretations of published method or specification semantics was
found on two tools. In TAGS, the Diagnostic Analyzer and the simulation generator
embody different interpretations of the IORL (graphic) language, in some instances, than
the reference manual of the language. IDA believes these are implementation discrepancies
that will be corrected in time. Software Through Pictures allows multiple processes in a
context diagram (a clear violation of published DFD dogma). When these are decomposed,
irresolvable numbering conflicts arise between levels, so this permissiveness may lead to
trouble. The tool does not allow external interfaces or entities to be introduced at lower
levels, consistent with dogma. All external interfaces must be defined at the outset on the
context diagram. For a system as complex as SDI, this forces the top level context diagram
to be extremely cluttered and hard to follow. The interface complexity of a BM/C3 system
will demand a means of "hiding" the multitude of interfaces, and then progressively
exposing them at successively lower levels of detail. IDA believes that this could easily be
permitted by modifying the diagnostic checker of the tool.

x4
1

L 2
ez

o
o

=

el

v -

1.‘

3.6 DESIGN VALIDATION AND SIMULATION

Designers of complex systems need both static and dynamic validation aids from a
tool. Static validation ensures completeness and integrity of a design as a whole, so that
the parts match as defined and can be used for further automated processing, such as PDL

15
UNCLASSIFIED

I GURYE -t ey - h AT A e K W) O e R YO) A A R A S B TN \-'\"'\‘
YO WG S N R R R e et g, DR TR Y o S T '...lh WY % S UG iy $ DN = e n

R TS PO TP S T T L R R T O VLY Y T T TOT T WO PO Ml W ¥ 3 WOl ™ i ™ W W\ WL

UNCLASSIFIED

or code generation. Dynamic testing or simulation permits the designer to review the
expected behavior of the system in operation. Dynamic testing also should be supported
even when a design is incomplete, so long as some minimum specification has been done.
The TAGS simulation capability, which supports simulation at any IORTD level,
demonstrates this, as do other specification tools not evaluated here [Zave]. (This is
provided in SADMT, for example, through the parent or non-leaf processes.)

The static validation provided by the tools basically involves completeness checks
of individual diagrams, consistency checks between diagrams at different levels
(balancing), and cross checking diagrams and associated tables where appropriate.
Software Through Pictures had a diagnostic limitation in the version IDA used, in that no
checking of control tables was done. This has been added in the current version. A
noteworthy difference is how errors are presented. AUTO-G, for example, places error
messages on the diagram. proximate to the error, which makes diagnosis especially
convenient. TAGS provides a separate error listing, but keyed to the diagram by reference
numbers automatically added by TAGS. Software Through Pictures provides a separate
listing identifying erroneous elements by the labels, if any, on a data flow diagram.
Unlabeled or hidden ones may be extremely difficult to locate. Appendix B notes that for
one type of diagram, error messages refer to "lines"”, which are not elements of the
diagram. Teamwork provides a separate error listing also, identifying errors by the context

in which they appear on the diagram. IDA had no difficulties in locating errors using
Teamwork's listing.

At this time, TAGS is the only tool that provides for simulation of a designed
system (not exercised by IDA). The simulation involves Ada code generated on the Apollo
workstation from a design database that passes the static diagnostics. The simulation is
performed under an accompanying simulation environment on a VAX computer. TAGS
simulation can be done for any valid TAGS design, and at alternative specification levels
(I’ "TDs) without having a fully completed design. The user must provide the simulated
in, » _either by interactive input during a simulation run, by data file access, or by
additional simulation code representing the system environment.

DCDS will have a similar simulation approach on its VAX implementation. AUTO-
G developers state that they are working on AUTO-X, a simulation package to accompany
AUTO-G. Cadre is working toward a token based simulation aid for Teamwork by which

16
UNCLASSIFIED

A N
k,"",'

oo R

.

<

. "n;‘ L_lr

”
[4

WY

e
<5

P

;5'_5.‘. LV

[gt

i

S5 MO AL

P

5 %
'C.l"l’{'
o il o

.

TP

A

e
€
o,

. g v, P P T L TR T LI IR R L - T T R] &) O -y -n-_----v-'-
R R e S R e o N S PN e e o e

:x-..
! ;:::
1} A l.
UNCLASSIFIED e
oy
NS,
) PR
' 1
the designer can check the expected behavior of the system model in a flow and activation Ia 5
sense. A
. . . otk
o SADMT is an avenue to overcome such tool limitations and to achieve a simulation :k:'a:"«
" environment [Cohen] that can be controlled by the Strategic Defense Initiative Organization 0
for objective and uniform assessment of contractors' BM/C3 designs.
a AN
by x l..:t
3.7 SCALE OF DESIGNED SYSTEM . ":::.(
: e
g Because the SDI BM/C3 will be a large and complex design, a crucial question is ::!::
whether any tool "breaks” (e. g. crashes, runs out of space, or enters some excessively A
}- degraded performance mode) as the designed system evolves to its full scale (say, many n :::
hundreds of objects, data flows, and decomposition levels). The IDA design exercise was 4....
X not carried forward sufficiently to answer this, so present users will be contacted regarding ‘:‘ .‘;vl
b,

their practical project experiences in the near future. This aspect, among others, will be
covered in a follow-on report by IDA in 1988.

" BSYoV
D v
I g
3.8 EXTENSIBILITY AND ADAPTABILITY ,:0-
NN
The capability to alter or extend tool functions and design semantics is important for -
~
SDI, for several reasons. First, the SDI scale and complexity, and the interests and ? ':\:':
3 technical knowledge of different reviewers, call for a means to easily produce non-standard }‘E.v
reports on a system design. For similar reasons, new design icons and corresponding ES’
extensions of tool semantics, may be important to enhance the graphics and depict the many -
¢ distinctive attributes of a BM/C3 system. - Also, SDIO is fostering a System Description :;:::."‘
%1
" Language [SRS] employing various graphic presentations that are seldom found all ';:
N together in available tools. Cf}: 3
These requirements imply the following capabilities: access to the tool's database, A »
’ {
3 to add new design attributes and to link in user-written code for processing; access to an 3\" N
. icon editor or the tool's display generator, to add new graphic forms; triggers or other :‘;:?E -
N means to have user-added functions controlled from the standard tool operations, such as E O
; diagnostic checking. }‘f
» LYY
No tool provides all these capabilities. Interactive Development Environments);:ﬁ‘;
empbhasizes its "open architecture” for Software Through Pictures, and already provides %
(B
'
[‘1]
¢ 17 X "E
WOt
UNCLASSIFIED Q~'
0

L s e - p A . (r 0 7 O 1 W O IO 7 o
1"\\‘(' '1 D A A A A DA p i e o K n N E e PR N N W Nl LR e X . ALY RN AL A

; < N o TP TRTID g y
s Iy RS PR R R PN UR R SRR AR I A RN N W VL W W Ny P 8. 8" R RTOR R R OO W I R U AT R UN U LW e’ MR Sa glg B%4 8% .'w

g B

»
UNCLASSIFIED ‘:

A
.q b, ‘
v
‘i
substantial information on its underlying database structure. User-written programs can be e ""
used readily with Software Through Pictures. In particular, user-written diagnostics can be v t ,i‘
triggered from the tool's standard diagnostic operation. A wide range of adaptation also is :3 ":
provided through the ToolInfo file that tailors Software Through Pictures to a user's POl
preferences. PICture, a general drawing tool with predefined icons, is available, but this is <
not the same as the desired icon editor; only limited tailoring of PIC's icons is available. ".f "
Cadre Technologies already provides its Access tool for user-written code to access L f
the Teamwork design database. More development toward an open architecture for _’.-':? ey

Teamwork is forthcoming in releases planned for 1988. A Graphic Notes editor, released ;
with the newest Teamwork version, provides for free-form graphic annotations on :'-\; .r“
diagrams. o N

>

TAGS and AUTO-G developers also provide access to their tool database for users }: Ky

who require it, through user-written programs. !:
. - . . : 20

DCDS is the only tool that explicitly provides for user-authored design attributes o 1::

within the specification language. Its QUERY facility also supports user-written validation s
procedures and reports. v
-

3.9 TEAM DESIGN SUPPORT -
wo
BM/C3 is sufficiently complex that multiple designers must work together i g
concurrently, rather than one at a time using just one database. The tools differ W)
significantly in their mechanisms to support multiple designer teams. An ideal approach is N ;:
not easily identified, because project scheduling and management enter the picture beside . :-_Z‘_
the more technical matters of protection, coordination, and integration of design content. ;E :

oy

Protection involves shared, but protected access to parts of a system under design - D,

N

by different designers. Designers will need to view or 'read’ others' work, to see system oL
parts or decompositions that affect their own assignments. For both design and database) ::.
integrity, only one designer may update a working design at one time. Read-only and e. ;-t ,

read/write protection of distinct design objects are essential.

Coordination involves the control of design tasks for mutual consistency, so that

-
~ o
- e ey Y

Al R

F
their results can be integrated afterward into a self-consistent, composite system design. o
oo
)
o
. 9
18 R
UNCLASSIFIED -

N

A

-, . 4 ; LW AWMLY Lty TR % Ny e "N L R B T O R "y " L% LW
P N A A T s A i U i YOI S A N A e e

TR TR LT AR PO A KO W e lte et 80’87 0% i e 4 | 142 g YA MR Sl Autal. ‘et Vel 1 oy S ™) " YTy

UNCLASSIFIED

Integration involves tool mechanisms that aid this bringing together of results accomplished
by different people at different times into one complete system description.

All the tools use protection mechanisms provided by a host operating system, if
only to authorize individuals to use the tool. TAGS and Software Through Pictures
provide additional access control on design files, allowing read-only or read/write
permission to be granted to named individuals for separate system parts. (The applicable
"parts" depend on the tool's design semantics.) Teamwork provides read-only and
read/write locks, but they are not restricted to specified users. Authorization capability is
being added to a future release. AUTO-G relies on Unix operating system protection,
supplemented by manual actions of a design administrator. Because of Unix limitations
relative to AUTO-G requirements, the design administrator must transfer working copies to
other designers. Because of its strictly sequential design method and associated database
translations, DCDS does not support concurrent design effort. Basic access protection, if
any, would be provided by its host operating system.

& K

A

Another important need is configuration management, such as TAGS alone
provides among these tools. As top levels of a system are developed and approved, they
may be placed under formal configuration control within TAGS. Further design, to
develop lower levels of detail, references the controlled baseline. Any required revision of
the baseline, revealed by the further design, is handled by the formal CM method, wherein
the impact across the project can be assessed. Other configuration management tools might
be used however, working from tool database information extracted by interface programs.
This has been done with Teamwork and STP. Whether done formally with tool support,
or informally by a design administrator, CM is crucial to coordination of team efforts.

-

Fulf o2
s

22 A

None of the tools has features that fully automate integratine separate designer
contributions into a composite system. The basic copy, edit, and diagnostic features must
be invoked manually by an administrator or design manager, in steps that assemble the

>

pieces into a whole and resolve inconsistencies that may slip through prior design

'% coordination. TAGS has a MERGE LIBRARY tool in its Analysis Library package which

performs the merge of different system components from other geographical locations into
5.:: one database. Teamwork has a similar tool. Those with read-only and read/write locks
" (TAGS, STP, Teamwork), and multiple workstation access to a central design database, in
b principle avoid having separate products from different designers. Provided the locks are

19
UNCLASSIFIED

55

N

A A NI A

...............

“w

#

~

P R CRE R
” »

e

Py
.

e .'.-.I
YU
o8

-
>
"

AP A
2% ;’

"‘,-l‘
[

EANA

e

» "‘.‘ -

. “‘l R H
N " o sy
. . l- l. 1)

LYy

Y

o

P4

L

[
oy 1“-

5 e
2./ ® oV

N

A]

“ 0a® B Ha¥ 20 @2t 24 $at Sa® 8% 42" 020 Ua® fa® bei g 1"

/ '.-‘ “a) "\ ﬂt"

PR

UNCLASSIFIED

used judiciously (are not held for long periods), integration is done in place on a single
database that all designers access, contributing their individual parts. Administrative
control of different versions and baselining (CM) is still essential.

None of the tools has project management support, as would be useful for planning
and scheduling multiple designer assignments, or providing other management assistance
or reports such as estimation and designer time accounting. Teamwork has a limited
facility to enter such information as status annotations on design objects, but users may
want to provide their own reporting software to extract or summarize selected data.

20
UNCLASSIFIED

T Y WM Y P P VAR TP T
‘l‘,.,‘.,'ﬂ\ it .' .' X ’ aofL A" A 0.

« &

ah N

I

L\

C

B <

M o
ey,

A |

k(.‘.(-"l

A

e

TR A

.\‘!.5‘.

S,

.

Lt

e

iy 0 L4 349, 9, SAYa AV 4Va 3% 8L 4" fad b’ A fat ot fa¥ $a* VORGPV L N N T RN NEN R AN B)
4 . . LA h M .

UNCLASSIFIED

4.0 CONCLUSIONS

The IDA exercise has confirmed the usability of these tools, excluding DCDS, for
graphic design. It also has highlighted substantial differences among them, across their
range of capabilities. In the opinion of IDA evaluators, none of them now provides the full
set of capabilities that the SDI program needs.

At this time, TAGS, AUTO-G, and DCDS have greater potential ard capabilities in
areas most pertinent to SDI specification requirements. In particular, these three provide
for timing specification, and for fully defining the behavior of processes. Also, AUTO-G
now generates the SADMT representation automatically; TAGS is planned to have this
capability in 1988. TAGS has stronger capabilities to support team design, such as
configuration management and read/write locking of design parts. TAGS also has its own
stand-alone simulation facility; DCDS has simulation in its November, 1987 VAX version,
not covered in this report.

Major enhancements are underway for most, if not all of these tools, so present
comparisons will change in the months ahead. This evaluation has not covered present
user experience thoroughly, and important new experience will emerge from use of these
tools by present SDIO contractors in the next few months. Also, IDA did not attempt to
stress the tools in terms of design size or complexity. Contractor experience will be of
interest on this important issue also. This report is therefore an initial assessment, that will
be pursued toward a more substantive recommendation to SDIO in 1988.

21

UNCLASSIFIED

.

ol

o

B

2 a_w u_x &
IS SEART

.r}-‘,.{,{-.

-
-

- < >

-

PR Tl

<47 G

F A AR ARA

e

PR TN R R A IR P TR U AR AN N G N W Wy ‘At ata e 0 a's AV Ys \ LW LW LN LY LTy R A M LA G Sl a8t Sk duh O] Sl
RN R RN AN R AN A O N AN O 1A' 4 40t A0 Joa QAL SR R TRV 2V,

-

®
UNCLASSIFIED Q4

\.:, o'

v, %

iyt "_h

g
O
REFERENCES 2 2

Chen, Peter, Principles of Database Design, Prentice Hall, Englewood Cliffs, NJ, 1985, ~

pp. 174-210, Chapter S. '-,.
] "\ "

n .

3§
Chludzinski, John, A Comparison of Process Design/Description Languages, IDA Paper, it
forthcoming. . B
e :::‘;

")
Cohen, Howard, et al., SDI_Architecture Dataflow Modeling Technique (SADMT) o,":‘
Simulation Framework, IDA Paper P-2036 (Draft), 17 August 1987)

A
-
[z

DeMarco, Tom, Structured Analysis and System Specifications, Yourdon Press, New
York, 1978.

s s
Z

¢
{) .|‘
R
Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Techniques, & 5
Prentice-Hall, 1979.
v
Hatley, Derek, "A Structured Analysis Method for Large, Real-Time Systems,” Technical N
Report, Lear Siegler Inc., Instrument Division, Grand Rapids, MI, November 1983. N,
L'y \ ‘Q
®
Heystek, Deborah, Proceedings of the Strategic Defense Initiative Organization (SDIO) R

Too] Fair, IDA Memorandum Report (Draft), March 1987.

Linn, Cathy Jo, et al., Strategic Defense Initiative Ada Process Description Language 2
Version 1, IDA Paper P-1983 March 1987. '

NERN

- :
Page-Jones, M., The Practical Guide to Structured Systems Design, Yourdon Press, New Y
York, 1980. &N
* .::

SRS Technologies, Inc., Strategic Defense Initiative System Description Language AN
Specification Version 2 Draft for Comment, 9 July 1987. RS
o>

RN

Ward, P. and Mellor, S., Structured Development for Real-Time Systems, (2 Vols.) SRERAL

Yourdon Press, 1985. B
Zave, Pamela, "An Operational Approach to Requirements Specification for Embedded i ~
Systems," IEEE Trans. Software Engineering, 250-269, May 1982. o
~ G

®

¥

- o
s
! W

22 R

UNCLASSIFIED L

R

P

RIS S Rt (N e WV L N LW S P LA P W o WS, W i O e T T T A .r,_\c\ o
'!‘.‘!‘n'.‘-'.‘l"l'-.l‘. U0 T A A AT XA SRR o e g

UNCLASSIFIED

Appendix A. Tool Summaries

XS

‘:':3?-:

L

2.

e
ST

CONTENTS

B

."
S o
%

- e

~.an. :

T

DCDS

-
-t
h ol
o e

Software Through Pictures

Teamwork

N Y NS
P XX
4.'-&5{4.

DAL

o
/

io

"
C X4

50
%

5

A-1
UNCLASSIFIED

&

AP ALs
l*““‘
P A

.‘,.
"

~ - R AR . T R T R T g P o T o T T R LR L e e g o T AT AT S TAT AT AT LA RN R a
A'..h'. \- "'.‘\"p'*' _r 1.\\\.?.'.',.1' ’ " ~!~- -..' A ”“.. oy \'\- : \\- Do) '

K (3 X}

X=X AR R I U U UL X YRR N V) OF R TORTW Y W AN LA NEN VAN SR RPN S adey oW irw

o

AN
-
.F&

- UNCLASSIFIED
ey
: :
::; Technology for the Automated Generation of Systems:
(X .
* TAGS 3
R of
) N N
::. Teledyne Brown Engineering é
W,
‘3; TAGS consists of a set of modules that together allow the user to define, analyze, w
:';" and simulate running of a new system. A system under design, though generally electro- A
[}
‘;3' mechanical, normally contains an information subsystem as an important part, and this is o
' the prime part that is usually simulated in its operation. Major components of TAGS are: m~
E‘.‘: a. The Input/Output Requirements Language (IORL). This is the graphical ".}Q
;:}a system design language which allows the user to draw block diagrams of the
,::u system to be specified, then document the modules and link to other parts of i
the system. =
;‘:‘" b. The Diagnostic Analyzer (DA). S
G/ M
. c. The simulation system, with the simulation compiler. i
'V.. >
e TAGS was developed by Teledyne Brown Engineering as part of their Technology < .
"; for the Automated Generation of Systems (TAGS). At the highest level of design, IORL
:'S'; supports the decomposition of a system into Schematic Block Diagrams (SBD) which use a3
:::‘ "black boxes" and connectors to symbolize the system's components (processes) and by
Q
' communication between components. Data passed between components are specified .
o (typed) in /O Parameter Tables. The algorithmic logic that corresponds to an individual ‘F’
:5. ‘ component is formally specified in an /O Requirements and Timing Diagram (IORTD). .
N "
2 Using TAGS, a designer may choose to start with a two-component universe: W
the system and its environment. Thus, with a Schematic Block Diagram, the system
) designer first gives a black box description of the system (Figure 1). The components of g
LY -
:';: this block diagram may then be decomposed into further SBDs, as shown in Figure 2,
:-_: where the INFO_SYSTEM block of Figure 1 is decomposed. The match to inputs and %‘\
(outputs at the higher level is shown through dashed lines at the lower level (the TAGS
o system requires the specifier to do this, though the analyzer will later check for oy
:‘,:' consistency). As an alternative to decomposition, the required functionality may instead be =
';::: defined using an I/O Requirements and Timing Diagram (IORTD), as shown in Figure 3. -
y::‘ :‘2
o "
" A2 v
W
A UNCLASSIFIED

Lk ath gt el 2 ade e

‘0 ¢
o
UNCLASSIFIED -4

DATE: 20-Jul-87

PAGE: 1

INFO_SYSTEN

1

SEC: SBD

ENVIRONNENT | ey -2y

2

00C: DEL
ISSUE: D

Aﬂ(32) ELEVATORS AND N(C&@) FLOORS

HAP: DEFAULT.HAP

SYSTEN: DEL

Figure 1 - Schematic Block Diagream (Top Level)

A-3
UNCLASSIFIED

Do o N O e N TN g g S g S A T R SO Y T
N ot i W o X%

UNCLASSIFIED

£8-1"r-%Z 3180
T *399d

g :3NSSI dUlTLINY430 ‘duU
08s :J3S H31SASTOINI :J00 *S591)

730 H3LSAS

TOYLNOD ¥3dNS ONY NOLLNG 1X3

SY0014 (B9IN ONY SYOLUA3T3 nNMutAV

A373 3A0H 01 JJGUAM

JY3IH

Z1-730

beceeeeae

v

TJOYLNOI™HUOID
E

ZE-H3L1SASTOINI
E€Z-H315AST0INI

YA313

YILNNOD JO7T ONY SNOLING INI HOY¥4 T

YV 1z-130

Figure 2 - Schematic Block Diagram (Exploding INFO SYSTEM)

A4
UNCLASSIFIED

N
1,

!

La"8 .4 " ‘!

e

AN ST

£,
Nl

¢

o

.

-
.

",

L PR)
s

v

COAS) DT kT
\ nqbn \f".

"vﬁ ¥

D.O.¢~,

oW

X

‘S

e - 3 cgt “mY xrs Rt ‘@S
LR AR U YR AENE A AT I SUTOYURL T FUNENY - €0 $a8 7.k Sal Sof S0 0aR £0 0ub Pk up Sit gl pt
AN I NG PELUSISL e .

UNCLASSIFIED

~
]
]
3
3
&
-m
“ e m
&8
¥
R)
: o
‘ u
! -
2 ‘.*
g &
. =
\. 1 [+ 4
X) o
2 (=
~ @ .
o
w
[N n
)
-
i -3 e n UV o) A b
] = Y Y 'Y =
: (7 L
“
o
! &
=a
o ow
& 33
[L | [¥2]
z -
o
—
5
a @
= 0
[) z -4
-t |
0
[}
by
c
<
5
> J
z2
o
; =8
§ w
—
va
> @
[Fg I et
i)
P Figure 3 - Input-Output Requirements and Timing Diagram
)
) A-5

UNCLASSIFIED

M row PR \) ’
- n O™ T T R W e 8% %) why "'

- Yy e - R TN - A ‘ U ; T

'k.n,l..io.l e Bl a8y o ® e g) l.l'- DS LR pax X Rl .“h oo Wb 'O~ Yo .' N N HHLOHL, . v ’ AN N USRI A A RS

. . B [y L} - \J
J I T TP I T R L W T N L L R T o WL WK YW bt o 0e ta aPa e it IR la® Bnt it Sat tat Bat a0 ot Bt 1af Pttt .00 & 99,87 0% ¢ o;“

3 B

UNCLASSIFIED ey

% M

In this example, the definition of the algorithmic logic for a particular component of the b :::
ELEVA box is provided, using two procedure calls: INT_BUTTON_REQUEST and o ‘!:i
BUS_HANDLER. Communication parameters between components is specified in an /O RTINS,
Parameter Table (IOPT), as shown in Figure 4, where the line INFO_SYSTEM--32 of X
Figure 2 is specified. Parameters in these tables may be grouped so that components may Eg .5;
transmit groups of parameters. 4
Components defined by an IORTD are processes. These processes communicate ? '1

via synchronous "call", "listen”, "send"”, and "receive" events. For a process to send a f
message it must first call the process with which it is to communicate. The corresponding ; .:'.

process must be listening to receive the call. A "call" is a continuous event and begins at a
specified time; similarly, the "listen" event is continuous and begins at a specified time, but
unlike the "call” event it only lasts for a specified duration. Once a process detects a call

&
s S

B
from another process it begins sending the specific information. Consequently, the two g ‘...
events must overlap in time for the message to be sent. The macro (MAC-11) of Figure 5 '.
illustrates this; it is used in the Predefined Process Diagram (PPD) of Figure 6, which is the .y ..:,
procedure definition corresponding to the BUS HANDLER used in Figure 3. The IORL k :;‘
includes facilities for the definition of data types and operators; examples of the definition .:::
of the data used in the BUS_HANDLER procedure are shown in the Input Parameter Table " ; -
(IPT) of Figure 7. N

TAGS allows the use of traditional mathematical notation, as shown in the :J’ :.
subscripting of Figure 6, but it makes no special provisions to specify the underlying b ,':
execution environment. Teledyne Brown Engineering believes that TAGS is capable of “
describing hardware systems. However, there is no specification capability to explicitly 3 :‘:E
allocate logical processes (software) to hardware resources. "‘5 ::::

In IORL, timing requirements are defined in terms of I/O events. Processing and 4 Y,
decision logic must occur between the time of the last I/O event and the time of the next /O G| : 1
event in the control path. Delays may easily be built-in and time tags (internal variables) o :
may be included in the description. s ::_

The Diagnostic Analyzer (DA) has three stages, which perform syntactic and :.c R
semantic analysis, validating the complete specification. Examples from runs of the DA are RN
shown in Figure 8. Provided that the system passed the DA without serious errors, a set of ;\ 5.3'.
diagnostic and system analysis reports will be automatically generated; these include a _ i\
variety of hierarchical charts, and are shown on page A-12. . ; y

e

-~ oy

A-6 :), . i
UNCLASSIFIED N

& 5

_ i3

oir O Y Wty A A e LS T A AN S W W e e N e e e e e N e N e N N T LW o o Py ¥
V‘.-" My 4‘".0 .,I x) .I"Q,O ~~ A .l“.l N X v ‘, o .y o 4 ., - 2 n™ M p Pl M g X) ~.~.. X X () .“.

.......

FrLE
£8-1"r-T1€ 3140 0 :3nSSI dyl—1INY430 :duu
1 :39ud ZE-1dOI : 335 HU31SAS™04NI 2300 :55471) 7130 *HUILSAS
Ze'""'T'Ly 0Y30™A313
3'1> 440NOY
sinvd sne| «
TYITH00S
ze' 't n OHM =
m 7167 TWNNIINT A3T3] 9 =
|
—-— 4 easoet [] - [
i <09 ' TIYI"H00 14 g
n @z'n dx3 m
M. £$'23 C.NMOO. *.dn.) NMOOJNS g M
~l T3 ¥0OJ IX3| S w
nN... 31> 1008349 CZEISAS S.10083Y ¥Y3dnS .
<
> HAN~A3T3 °
%' """ 'e'2) T4THSINIS ma
s’ Tt 14TLYLS e
€4'1) NOX3¥
ST7YD HOSIA¥3dNS| E
€ze' "r'Z'n HNAN~A313
P9 "'2°'1 NJ017 30014 NOILISOd ¥O1YA313
€4°1> IUNIISY TYNIIS
|
|~ 39NUY 3N YA UGN FOTAT NATT IS 5T 7T 7
Bl X S 2 P PSS 2 S SE A B0 W 30 B3 $8 N e 855

UNCLASSIFIED

WIS

OGN IO,

»

-“.-~f ' Lo

Y L
! |‘.»|n‘. g

i35

o

P A e Lol
-.' .'N(

[2

I3
-
-
d
-
d
-

S IS Y
malad

Ko

[N

“w L,
ARV R -

NS

WA AN

(08 0°8.8 fat"

ERNRYS AL

UNCLASSIFIED

.-\l.'k,%-c,rt AN NS s

Lo ER) N R A Sy Y

&5 B iy 4SS BE. vy

e 0 . > Pl
BRIl T o T BN R PPl bl e, 0

e ...,
A A PR

s v“(l -

[TACHIC Y B, %

£8-17C-08Z 3140 Q :3nSS1 dUUT1NY430 duu
T :394d 11-3ud $335 730 :200 155U 130 H3LISAS
Ri{uo hemn ®uUO0o :0J4D®|| 19edpeoJg
1 1] P <
(Pea2)
CAL Xé)
ge'ye'ellLe)d
T112JuH
29¢°19¢
1
-)
ALY
ge‘ue‘sLLe)
p: N31517 —X
N 19¢ X

Figure 5 - Macro-11 Defining Communication

-8
UNCLASSIFIED

B~ ar

RO

. l‘. L0 '» 4y

RGO

Y

o W WS
NG

"\"n"‘ ‘if.‘ww\'ﬁ Y

@

N atatle

L

b Dt 2t 4

>

AR AT I

ARy

..

. "

R O,

N byt iyt

AR

D o
27
® %

UNCLASSIFIED

-

e

[

[

P

£8-1"C~-1E 3440 Q :3nSSI duu—1INY430 G dud
1 :399d 2-0dd :33s H3LSAS™O4NI 2300 15547) 730 *H3LSAS
¥3IONUH™-SNE
z
qd 11x3 q r1x3
 11x3) q 11x3 , : -
M.
- en
CIWITU00T * dXI NMOOdNS IAIII"HITHNM|! | 4=HSINT 3= AT 0001 3H ¥3T0NUH™ 307 £
10T)] | 93~ 13015 "3By00147 el 2
NOX3g=*" A9 TA313dX 38 £
o
. en
ﬁ..g.ﬁd oN31gyL " 119Ie Da
1 PR
C='"0) (' 0> (o' "0 (=2 m <
tz'n tz'n wz'n Z'n &
Co' R ML (o' "P'ELL) (B e'ziIL) e 'p'zLIL) o
17091 T1JuM 114U 11284 o
91 s'1 £°1 r A rm
ZE-HU3LSAS 04N ZE-U3LSAS™0IN ZE-H3LSAS 0N ZE-HILSAS 0N 3
g
[
€. O
(12D
Z11'Ay13Q m
o0
i
D N 0119301
A373 ¥3HIO f SNOLLNG UNY3ILX3 mom?zu%mq{ NOI16I07
N
@CITED)
L J
2 BN Sk O55 Sdy S5 s PR 5 ey 2wy w4 P

LA . ” -\ !-l' + h
i AR

UNCLASSIFIED

A

It

- e

Y

AT LAY

WA A
i"-.“\':ﬁ‘\.\x

v g

B

8, X s ..n"-'t V.

o

8,8%0.0%

)

A4
[A.aX

~

U AN I U e S

-

-
o
-
(]
%
o
a
al
b
-
o
o
2
f
-
-
o

v

2,070

R T O TRy
-

ORTORTD

ONINU3W 3NWA/SLIND

LN e s s P e e - —— e
LB NANES. o L = ‘% ..M‘I«:\ .ﬁ.u-“ - n-f\ﬂ\a- ﬂf} \\A- flﬂ? R 2 !ubv:’quf.\-svu ..\.-N...u-.\....-. % \ . \-'-\.-A.-F-‘F\f\-
I B Y F2 22 555 5% P S A AL Mo Jos O I S X AT S
£8-1"r-1€ 3160 0 :3nSSI dyu~1InY330 dud
1 :399d Z-1dT 23S HILSAS™0NI 300 15591) 130 *H3LSAS
L
S
o b
w o)
W Q
® =
7)) o
< [s W
g 2
R
N t
> ~
'L 135%| CZE)ISYIONOLSIY SSOd JO L3S ®
=
3'1) 378017908 (99'ZE)> 03174 SNOILYI0T W.o
¢4'1) NOILOUNI® 1IHIT30 NOILOW
@' "'z'n NOIL1YI01 C(ZEINOILISOd
, C-¥3IHLI3N,
te'2) ~NMOQ. ‘.dN. > d10s CZEINOILI3VIA
Ze'""'2°'1) 03173135 A3713 40 X30ONI
9" 'e‘2? YOO 1H (ZEIY001d IH .
TR A § ¥00IAN (ZE)YOO4 ON _
4°'1 A313dX3% (ZEIYOLYAIII mmmmlﬁ ‘
JONYY 3INTYA UUN FUTAY NATTATNAC 3N W31 31w 1 ¥

A-10
UNCLASSIFIED

O

thA

e T "ﬂ'

Aty At TR I T UL A AT U R R U RN TN U N YU WOV V. W " 1 ful 4, Y ANV - YNWPYRNTY ot St 4a? 12 b v " oEa AUk ae - 2l N Y

UNCLASSIFIED)

L2 BR

*7 2

.

DR USTOG - .

- (Y- AN \ "

J p VIO C, B i
v

AR F AATES. ALL STSTEN

psviey

15:10:53

1. 8 10 asel watilie wuwries migwier {6 o merfass Wt (8 ARt Rl
w e J0 soprev e sted s Tw 10D & M. A-0
MOSOd. OTAAI0S TCION. IOATO-2 ~, i1 e, 4

11508 § VG rolererand bt "ot @il asiiiled annew. O _ASTOS 12
GOSOR. OT_BAT06 FCIOG 10WMO-2 ~aL, 5 e,

-

N Y LR R

10 astel watifies e fan eeigeier (o o (Merfam Y L1s mt A
s Yo W enpww swcisud nth v (OO & MO,
OUrE, MRAT.ONOLY CTION IORTO-] ~a. [, - SO)

RO refereced BA ret dafired (A esifled dosm . mvmm-u
OOXUDA, MLI.OWAIY CTLON 1010-2 . [, -9

[RL § OO referarceds BA ot dafived (n wetified deamww. mrmqu
oo,

-
- -

REF
il

- Yy

20 FALIOUDEY SCTION WOMD-2 MRE. | Srwa.,
U
g . - § POUMD reflorerand bA fet Bfled A wusifled dasew. ”M“J’ﬂ-ll ':,h ;
TOrON. DASATOS NCTION IRTO-Z ARE, | Sred, O Y
. l&:
MR U Veudie in PIABT (g ret reflereams. b1]
J « ARSALTS W1 I0PT-42 [- 1 } oy, 4 @muw) '.?
g o ¥ VYerimie \n IP1/PPT o rat relerecnd. nab y
ooreT. a LTI PT-| ~ex, | @or, | w3} <
o ¥ Yeruate \a IPTAPY la et relererand. Sepen
0OrO#, MAT.OLALY SCTIO WOPT-12 [~ 3 | caamr. ¢ Qww) N
v M U Veriale in 1AW e et relaronns. Newry o
-’\,;’(COSOR, MATOLALY WOTION [0PT-42 ~ex, | . 2 owuw) '
-'/" o ¥ Veruais v AT 1o Ao reieouns. Loshewn kat
AN CrOd, MALI.OLALY NCTION PT-12 ~ee. 1 casy. f @uw 3)
an froiysie grecess ammpl vwad: succamii Iy ‘
V7
i 1a%22 Cowiiation srovem campletad: aamesfully -
133 $ Imayetion recam ampletas: weaaneesful ty %;-
N nme OO0 F FTL we y
*‘)]
A i

l,'l' Ry

DWER LISTDE o0
i@ 1842 Lo
FTOURT, B -
" I
P'\l SER OF AALYSIS, RuL SYSION A
e
N
oFOn Jva. eea .
a8 r
o ’
'-_' an 2 PO ast ta Bfld A T8 e leel Guaet of Nie aetes. ”, f
. SO, 8 ATTION AC-11 !
L3 -1 3 Areiyeie groomss conpleted. ww.ooewsfully ¢
- oSO, ara ELTION MR- i1 2N
,
',.' a2 $ Comwpietion procwas compteteds wrescommiully o~
- st ot WLTION. MRC-11 >
& 1§ IMeyaion wraem aroleted. wvacommiully)
nroa. ans LTI, RC-1)
'm s (O F FDL san ;-
%
X0
] "
W '.'-
>,
4

Figure 8 - Listing from Diagnostic Analyzer

A-11
UNCLASSIFIED

&3

UNCLASSIFIED

The Page Audit listing; an inventory of the system, with the date that each
part was originally input or last changed (Figurc 9).

The SBD lattice; the hierarchy of the SBDs (Figure 10).

The Data Dictionary, with lists the variables alphabetically, where defined,
their type, and where used (Figure 11).

The Flow Analysis listing, which gives the relationships of input and
outputs for each interface group (Figure 12).

The PPD Cross Reference log, which gives a list of all calls to and from
procedures (Figure 13).

The simulation compiler translates IORL system code into Ada. The portion to be
simulated (various levels may be selected) is termed a Blueprint (see a listing in Figure 14).
The Ada generated is provided only for simulation purposes.

A-12 "
UNCLASSIFIED A
POEEEN
. e
E:
W T ") AW W T T NP ™ LYV T T SN X " " L R T R LTy R L Y R RV PR)
Pty ’- At ,l‘.','- SOOI i i Lacalntin S, A L T A o ot R R R DRI D v

[T PR TALI W WL WP WP UM S KWW W ¥y VAV, LA~ Ll Dol A URE A A

=

UNCLASSIFIED

W

LYy]
ég Page Audit for System
Document Issue Section Page Class
1 DEL D 10P7-12 1
g 2 DEL D 10PT-21 1
3 DEL D 10PT-21 2
4 DEL D MAC-11 1
. s DEL D MAC-12 1
. 6 DEL D SBD 1
e ? ENVIRONMENT D 10PT-111 1
8 ENVIRONMENT D 10PT-222 1
9 ENVIRONMENT D 10PT-36 1
i 10 ENVIROMENT = _D__ _ __ _IOPT-S55 1
ﬁ 11 ENVIRONMENT D 10PT-777 1T T T T
! 12 ENVIRONMENT D IORTD-6 1
13 ENVIRONMENT D IORTD-7 1
14 ENVIRONMENT D ICRTD-77 1
CS 15 ENVIRONMENT D 1PT-6 1
o 16 ENVIRONMENT D PPD-1 1
17 ENVIRONMENT D PPD~11 1
, 18 ENVIRONMENT D PPT-11 1
o 19 ENVIRONMENT D SBD 1
hY 20 EXT_BUTT PUSH D I0PT-12 1
i 21 EXT_BUTT PUSH D IORTD-1 1
22 EXT BUTT PUSH D IORTD-2 1
23 EXT_BUTT PUSH D IPT-2 1
i 24 EXT BUTT PUSH D PPD-1 1
25 EXT_BUTT PUSH D PPD-2 1
26 EXT_BUTT PUSH D PPT-1 1
27 EXT BUTT PUSH D PPT-2 1
v 28 EXT_BUTT PUSK D SBD 1
:.- 29 INFO_SYSTEM) 10PT-23 1
8 30 INFO_SYSTEM D 10PT-32 1
31 INFO_SYSTEM D I0RTD-2 1
32 INFO_S(STEM D I0RTD-3 1
g 33 INFO_SYSTEM D 1PT-2 1
> 34 INFO_SYSTEM D pPPD-1 1
35 INFO_SYSTEM D PPD-101 1
36 INFO_SYSTEM D PPD-12 1
o 37 INFO_SYSTEM D PPD-13 1
Y 33 INFO_SYSTENM D PPD-2 1
‘e 39 INFO_SYSTEM D PPD-20 1
40 INFO_SYSTENM D PPD-30 1
. 4 INFO_SYSTEM D PPT-101 1
-, 42 INFO_SYSTEM D PPT-12 1
~3 43 INFO_SYSTEM D PPT-13 1
a4 INFO_SYSTEM D PPT-20 1
, 45 INFO_SYSTEM D PPT-30 1
‘.:- ‘ T EARE SN b B 1] 2l SRN ‘l
-
l~.
"
N
Ay
t‘f Figure 9 - Page Audit for Complete Design
N
o A-13
UNCLASSIFIED

ey

LIS -v..\\\-'- A e L R N
“l“.‘t"i.\- N ."\- '("'. '.J s Lola \" VNN

Date

27-Jul-87
31-Jul-87
31-Jul-87
20-Jul-87
20~Jul-87
20-Jul-87
24~Jul-87
24~Jul-87
24-Jul-87
27-Jul-87

31-Jul-87
24-Jul-87
24-Jul-87
27~Jul-87
24-Jul-87
24-Jul-87
28-Jul-87
24-Jul-87
31-~Jul-87
24-Ju}-87
20-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
21-Jul-87
31-Jul-87
30-Jul-87
27-Jul-87
31-Jul-87
31-Jul-87
31-Jul-87
30-Jul-87
30-Jul-87
31-Jul-87
31-Jul-87
22-Jul-87
31-Jul-87
31-Jul-87
31-Jul-87
31-Jul-87
22-Jul-87
24-Tul-87

ol et T AR A A BE A R

’

o X

2,

5<

[

255 @ Pt e

iy
L

[N

PtV

L2 e
5’ .

b

&

XK
5
0 7

o
5%
Pd f‘.;‘ 4;‘" 1.

c S

]
.

oty Yy

1
o &
Y

CE AL,
YAARS S
SN,

r'.:
"

o
%

2T,
77| ®

A

-

PR TRy

X)

X

LR

Al

oy

W ¥

G

O A R N

S vak eyl

oy Sug W WA g ‘a' 8 a8 a8 a v 4™, v YOy

UNCLASSIFIED

AUDIT LISTING—

SYSTEM: DEL
DATE: 31-Jul-87

SBD LATTICE

ENVIRONMENT

SUPER_FAULT

SUPERVISOR
HIS_MACHINE
SUPERV_GEN

BUS_ERRORS

ERR_FILE

EXT_BUTT_PUSH
EXT_BUTT_GEN
E_FLR_CALLS

EXT_BUT_FAULT

INT_BUT_FAULT

INT_BUTT_PUSH
INT_BUTT_GEN
I_FLR_CALLS

ELEV_FAULT

ELEV_SINM

INFO_SYSTEN
ELEVA
COMM_CONTROL

ORPHAN SBDs

No Orphans Found

Page Audit for System
Document Section
10PT-12
I0PT-21
10PT-21
MAC-11
MAC-12
SBD
I0PT-111
10PT-222
I0PT-36
TOPT -S8%

Issue

~OBDNANLWN -

2
JO0OO0OUOCUOUO0O00

TNVIRONMENT

Figure 10 - SBD Lattice

A-14
UNCLASSIFIED

\¢\f\f‘;_

o s
." .
»

Page
1

1

2

1

1

1

1

1

1

1
'."- *.J:

Date

27-Jul-87
31-Jul-87
31-Jul-87
20-Jul-87
20~Jul-87
20-Jul-87
24-Jul-87
24-Jul-87
24-Jul-87
27-Jn1 -87

Class

A AN

e

W ey R YR Ve

-]
[

22td

?

L

P
Jalals

vl NG

et 06 0° 48 A 4 b

UNCLASSIFIED

OATA QICTIONARY LISTING

Ootes 31-Jul-&7
DICTIONRRY TYFE

« AL WS/ ALL OEFS

OR INTELRATION TYPE. UL SYSTEN

SYSTEN « OAL

a2 » CEFRLTIRP

OEFINED

ORTA TYPE

REFERENCED ©Y

odir

Strars

S iy
[

Scall_teble
el _trable

Geaxon
Gaxpe! ov
Afault

Sirmotion

Qoraff

Gaat

BRI N M L N e e T e . - -
N f:ﬁq‘ifuhzfi‘{xiufpx\'&f&“L‘ﬁu‘f._!"_"_A.‘ DA N PR N0

CINFOSYSTED PPT-38
(INFOSYSTEND) IPT-2
CENVIRONFENT) 10PT~-111
CENVIRONMENT) 10PT-222
CEXTBUTT_AEH) I0PT-12

{(ET_BJTT_ASH) IPT-2
CINT_BUTT_PUSH) IPT-2

<DEL) IOPT-12

(0eL) 10PT-21
CINFO_SYSTEID I0PY-X2

{INFQ_SYSTEN) PPT-101
CINFOSYSTEND PPT-20
CINFOSYSTED IPT-2
C(ENVIRONENT) 1PT-¢
<UEL) IoPT-21
(INFOSYSTEID I0PT-X2
(SUPERVISOR) I0PT-12
CINFOSYSTEND) IPT-2
CENVIRONFENT) 10PT-36
CINFOLSYSTERND IPT-2
CENVIRONFENT) 1OPT-S55
(OEL)> I0PT-21
CENVIRONFENT) IQPT-777
CINFO_SYSTEM) IOPT-32
(OEL) IoPT-21
CINFO_SYSTER) 10PT-32
(SUPERVISOR) IOPT-12

C(INFO_SYSTED IPT-2

INTECER VWRIFBLE
STRING VRRIABLE
STRING VRRIFELE
STRING VRRIRELE
STRING VRRIFELE

STRING VRRIFBLE
SIRING VRRIRBLE

STRING VRRIRELE

STRING VARIABLE
STRING VRRIRBLE

STRING VPRIFBLE

STRING VRRIRELE

LOCICAL VARIFBLE
LOCICA. VRRIFELE
LOGICAL VARIFBLE
LOGICA. VARIFALE
LOCICAL. VRRIRELE
LOCICAL VRRIABLE
LOCICA. VARIRBLE
LOCICA. VRRIFBLE
LOGICAL VRRIRBLE
LOCICAL VRRIRBLE
LOCICAL VARIRBLE
LOLICA. VRRIABLE
LOCICA. VWRIABRLE
LOCICAL VARIABLE
LOGICAL WRIFELE

LOCICAR. VARIRALE

Figure 11 - Data Dictionary Listing

A-15

UNCLASSIFIED

AT AN T N e Y W
.. /

CINFOSYSTEN) PPO-32
CINFOSYSTE) PPD-12 13 20
QONT_BUTT_AUSH) IORTO-2
(EXT_BUTT_ASH) IORTD-2
(EXT_BUTT_AUSH) I0RTD-2 PPO-L 2
CINT_BUTT_AUSH) IORTO-2 FPD-1 2

CENVIRONENT) PPO-L
CDFOSYSTEMD 2 12 13

CINFOSYSTEM) PPD-181
CINFOSYSTER) PPO-20
CINFOSYSTEM) PFO-1 2 12 13 3
CENVIRONFENT) IORTO-6 PPO-1 11
CINFOSYSTEID PPO-2

CINFOSYSTEN) PPO~2 20
C(ENVIRONENT) 10RTD-4
(INFOSYSTEN) PPO~12 20
(SUPERVISOR) IORTD-2

(INFO_SYSTE) PPD-20

T LN ACS

-

{ @,
]

-

Lo

&3

o,

x
”

WIFIL A
P o 4

?"l. :7{5}\‘,\ E 1". oS r.l;t.;&.;.';.';.!.

Ay
a

-
¢]

. l‘l'
‘If

M

P
.

) ‘fl;’l -"- .

X

k4 ..{','.'t

.-‘,-f:.-'-.p*-,;.g.-*

UNCLASSIFIED

PAVIBI) :_m_sn__.:.nx._z:
7-QHOI (HSnd Lid INI)

Z-03d {K3ISAS QaNI)

7-03d {WALSKS O4NI)
7-0d3 {NILSKS OJNI)
2-a3d (W3ISXs QaNI)

Z-aol {#snd Lind 1)
z-ao1 {Hsnd Lind 1)
L2-QIN0T (INTHNOYIANG)
LL-QGIN01 (INTRNOYIANA)
Z-anN0I {YOSIAM3ANS}
Z-a1N0I {HOSIAY3ANS)
9-al¥oI {ININNOYIANI}
9-AINOY {LNFUNGYIAN)
z-awol (usnd Lind La@)
z-amor {usnd_Lind D)
Z-axn01 {usnd_sind INI)
z-aor {usnd Lind INI)

1-Gdd £-QINOI (KAISKS Q4NI}

€-aiol {WALSAS 0QdNI)
£-aLIOI (WILSAS O4NI})
€-aLNOI (MALSXS QdNI)

1~0dd €-QLOI (WAISAS 0aNI)

9-aL4OI {INIWNOYIANI})
9-Gi01 (INTHNOYIANG)

€-aIN0I (WILSAS OJNI}
€-aol {H3ISKS QJNI)

€-aI0I (WIISAS_OJNI)
€-a0I {WALSAS” O3NI)
€-AIN0I {MRLSAS GaNI)

LL~GIYOT {INIWNOYIANT}

2-0dd z-awol {Hsnd LIng INI)
2044 {Hsnd 1ind 1x3)
Z-awor {Hend rind Ix3}

Z-a0I {YOSIAY3ANS}

1-0dd {INIHNOYIANT)

Z-AINOI {HOSIAM3ANS})

Z-add z-awoI (Hsnd Lind INI)
7-G3d 7-awol {(Hsnd 1ind La)
1-G3d LL~AIMOI {INGUNOMIANS)
€1 21-033 {W31SAS 0aNI})

€T Z1-add (sALSKS O4NI}

£1 21-03d {M3ALISAS O3NI)

R

2 aN0UY T1-Hshd LY dNd
I dnouo ZI-HSnd LLnd INI
anouo TE-WALSAS OdNI
dnNoM9 ZE-NALSAS QNI
aANOYS ZE-WALSAS OaNI
dnouo Z€-W3LSAS O4ANI
anoUO ZE-WAISAS QUNI
dnous Z€-WALSAS” OdNI
dnodY ZE-HALSAS OINI
dnOUD €Z-WALSAS O4NI
ANOYUO €Z-WALSKS OdNI
7 anoyo Zi-Hsnd 1ind a3
anowo T1-usnd Lind Ix3a
aN0YO LLL-LNEHNOYIANG
aNCHS LLL-INEDMONIANT
dNOU9 SSS-INANNOYIANG
dNONS §SS-INTHNOHIANG

ANOND 9E-INZHNOYIANG

4N0H9 9¢-INIMNOYIANG
aNONO ZZI-LNARNOYIANG
dNOYS 7ZZ-INIWNCHIANG
dNOY9 TTT-INARNOYIANG
dNOYO [T T-INIHNOYIANG
anoyo 1Z-1d

HNAMON® T O

-l
-T A0
-t N

~“ N~

anoyd 1Z-1d
3noyo 12134
danoys 1Z2-13d
a9 1Z-134

o~ Mmeno o~

4nodo 121

dnoys 1Z2-3d
anoud 1-130
anowo T1-13d
4anoyd T1-13d

- e

SAONIUIITY LNANT

N S
P g o]

SAIONRAEIN INALNO

SO LN 2 Ly
< R WALSAS
WRISKS TN 13dAL NOILVUIAINI Nd
SANIMAINT TIV ¢ 3dRL SISKINNY MOMd

L8-1InC-1€ 193%g
ONIIS1T SISAINNV MO

anoYs IOVAIRINI

T\J...-\ /..- --.-ﬂ -\ ()

Figure 12 - Flow Analysis Listing

A-16
UNCLASSIFIED

AR '
1
"j

NS ANN

.0

L
J\.A

L PR
.l(.".l..‘_ls.lx

. AR o RS T o .
Ve PPN AL, J‘J‘J“‘\I‘ﬂ'

MEERE VR NP RS

38"

T RO O A

ALY

P 4,
* Sk 4..

EEEE S OB

EZrnn e) S L s I Cs s i
-ﬂnw% 2 N E K], AL LI

- e ‘ﬁuwu|i,w>-

101{MILSAS_OdNI) 13 3AUH Z1-Udd
Z(M3ISAS QaNI) t-add
Z-GLYOI (MALSAS O4NI) 10T €1 £{W3ISXS QINI} yTIaN_sng 7-add
2-QLHOI (NALSAS™ QiNT) _ UG NOLLNE INI 1-0dd
Z T(RISXS 0aNI}) 7-Q101
a3 PeTI® STI% voTadraosaqg UOTIS
WRISAS OANI $PI uawnooqg
Z-anox {Hsnd 1and LG} MOIIS NOWING 7-04d
z-awox (Hsnd"L1nd L) 3ZI'INILINI 1-add
Z t{nsnd Lind LA} Z-QL¥01
24 PRI SIT®D uoTadraosaq UOTIOG
Hsnd LIng LA :pI uawnoog
(o]
w
w
»n 9-QLHOT {JNIHNOUIANI) _ XINI 11-03d
(7)) 9--ALNOI {LNINNCHIANG) ITINJ NOLINDO} 1-Gdd
M TV T{ININNOYIANT) 9-ALNOI
'3 2 PIII9 $1190 voradywsaq uoTIoeE
-~ :
o INGHNOSIANG tP1 juaumdog
23 perIed ST voTadiaosag UoFI0s
T3 Pl URWNOOG
00°¥019V160 LB8-INL-1€ UO XTINISSTIIONS PeIIvIS ADNGEMAIN £SO ddd
[a ¢t waashg
T4 901 DIEUAIN S0 G3d
N T W o & S b A o B Krr WS Kl Jo e e R

-
¥ x \&\\Mv_ L 2

2 ol

A A
L LS
on
£
k7]
3
8
& (o)
5 w
3 m
» ~ 0
2 - m
O <9
g 2
: o
as)
[}
5
o0
(49
LS A & < AN

“‘l‘t -

s
e
i
e

RN

A 2 Y
a0 N

-

S RSP

SNt v

G

- .-ﬂ-
.y,

h. ,

.2 B I

o0 e At At

o
w
L
»
n
<
-l
o
Z
=

Hiv wes 24

z NATH
€ "JIOHINCO WHWOO
9 WIS AT
€ NS AT

11 Hsnd Llnd INI
1 NS g INT
z 1nvd Ind a

2z nsnd wnd 1A
L Fnd na

LL suoud sng

SS HOSIANIANS
S IINd ¥3ans

1 WALSKS O3NI
T INGHNOHIANG

YIANON JNVN

ININOJWCO

T5TEEpT LB-TNC-TE TIWIL/3LNG YOLVHEAO HINMO

-“(“l."‘.l‘.'"‘("i‘l"'.“‘.“"‘CCC"‘C.'C“‘l'l‘I“l"("..ll‘.‘.“‘."l'("CCC'C‘.'.“.I"'Cl'l‘l.l"‘.!

Pl

WKLSXS OdNI

AT IO
000 :INT¥S3N'TE

ONIISIT JINI¥d3NG

Figure 14 - Simulation Blueprint Listing

L4
v
v
v
v
v
v
v
-
v
-
-
v
»
L]
-
-
v
v
v
v
v
-
L]
v
v
»
-
L]
]
L]
»
v
v
v
v
v
-
-
v
-
»
-
v

AONINACAL,

B N P SO AL e

PPN

PN

A-18

UNCLASSIFIED

......... S ure ma® €o” at $h b 02 o Fa’ 08" 0r nta ntd 1tn ats ats ath 2 &% a's uVd
TR R TR KA R D AR IWONA A N AP WA IOV, VU YU WU WU g Sprate 02 abgt 0a ¥ O ":.'

o
g "o
UNCLASSIFIED { Q::
S TR
% Auto-G _‘,_‘
by el
. Advanced System Architectures "
ﬂ i
‘i
@ Auto-G is a computer-aided design system produced by Advanced System ' .!?.:‘
Architectures, Ltd. of the United Kingdom. Auto-G supports both G, a graphical = B
g language, and T, a textual language, for capturing system designs. G is isomorphic to T “‘
and both include all the capabilities of a general purpose programming language. The :"!.
Eﬂ system was first delivered in May, 1986, and is being used in aerospace, :'t't."
v telecommunications, and C3 applications. For the pupose of evaluating Auto-G, IDA used ‘."’_
% the system hosted on a Sun-3 workstation. :::'::::E
' The top level concepts are "documents” and asynchronous processes. A system's ::E:E:':,:
3; design is decomposed into a set of documents, which in turn may be decomposed into IR
documents. The terminal or leaf documents contain the formal specifications of one or 4 .
o more of the system's asynchronous processes. Figure 1 shows the AUTO-G display ut oy
i:l; window with a top view of the elevator control system, decomposed as a document tree. 3
In Auto-G, system design is represented as a hierarchy of processes. A process is \':'d;
a modelled as an "action network" or state transition diagram. The flow of control through :*f'"
, the network defines the process behavior. Nodes in the network represent states of the ZE,, ':i
§ process and are either waiting or intermediate nodes. A waiting node awaits receipt of a :':{'
) signal which determines the subsequent branch flow of a process. An intermediate node is ’ "-‘ :
& a pause for evaluating a conditional expression which determines subsequent branch flow. i,
Transitions between nodes define a series of actions. The actions could be a sequence of ¢ :
g‘- assignment statements, the sending of a signal, etc. A network corresponding to a process ; "'
has one entry node or initialization, and no exit nodes, because processes are never-ending. -"".
& Figure 2 shows the action network for the supervisor control panel (super_panel). \«.‘t
Processes communicate by sending and receiving signals, which are packets of '*':
"f typed information. Signals are sent asynchronously and are queued for processing. The E’:
interface of each process explicitly defines the set of signal types the process is capable of ®
o sending or recieving. A signal is valid only if the signal type is included is the process :E‘f
X interface. A process will receive a signal only when it is in a waiting node, and the receipt "jsj
2 will start the transition to the next node in the action network. If a signal is delivered to a ~:: .
v '|

k A-19 R
t; UNCLASSIFIED)

j LAY R T TS T T SO SP LIS PR PI TS 3¢ AT N fO L L COTL IR LT T G et r i, eV
'.\":l'l.o‘.t.u X .!".\.‘.Qi‘.l!‘.!., .0,“!..‘-. Rl A M Sl O G [V (‘* .|., y oy L X . > 5% LK CH)

...........

UNCLASSIFIED

-l e - .l.b.!l.t- - ¥ e g e o X K} o * - o .<l " ..., i .vl o S e e - ey Ly .
22 g ORI SN _w?&b..r.rnc.mv.un RS XS T SR T @b Tt @b S A ES NS @I NN Abg

q 2 I3 OB S RS AT M X AR Peo £ BXs MY NS . e

146

Tepon
JOJEAS|S JO) SEN|RA
Jeyeensed sploy

ugi] Uo}lessosuT

s 0y ubsep
esUoIAU3 Joyeaste
20} ju9End0p

uojyeunbijuo)

Figure 1 - Editing window with displayed document tree
uncLASSiFIED

»
LoD omzfa Ry Frayrw .
ok Gt . .r,.;ll‘m u.- !
usasasdunp ¢
- CE~IN Up
s2ce CL3I0EMDD 0D W

o

o
.

SIRGNN

‘o QY 28" .‘ .,

ot R ‘Q

1, gt

20 1 8T UaY Bat pt

UNCLASSIFIED

- -

> e aﬁdmt\tp s e LYo PRIV R A - ?ﬁ'll
% cw\ \M 22 e @ BRSO oIS ENAL e[.n..m .ﬂ._w.kv.. % s @
ox . ' \u\- e e s Lo tarniarn) x o,
TR ‘\HM P AAARE DT mu ST A W R AL 0, .uhn” 7 \.ﬂ.m.\ﬁ“\ ?xm..\.ﬁ

i

WE0J3 0} "ABL®
$897J0)

J038AB) 39

s3Jeas

A3 03 0E0)

e

C([NA0 X3IONI)JoreAR|3)J00L)| 8s

uo sseudx

1043u0) JOYOH
29874010 S80=40) 0N

H
.

gSCJ.L —-Eouenuc.._-%.u

LLAILIR AL

onJy

Leuse3x3

snie}sASU

) .rd
f {
: 1023402
J08|AJedng
voniea0q 0 “dwogy
1T

I

$307dx3
$387J0) 0|

wa)shs

uojiessojur

M

30| “dwo)

bea-doys
sSn1eIS~Aau

: %:.vlL

4 \Jﬁ
-U\Inln

A:.umnouu:m 2A®g

¢ aseajay Boiny
:u.\;.x\ - _r(.ﬁp

uaasasdunp

CC 21JENOD D>

Figure 2 - Process description for onboard controller, with hidden parts

A-21
UNCLASSIFIED

RN TN

NANEALNACY

0,878 .‘.I‘ .

e

-

/

» ‘..I‘._C'p_\'..I‘.,l‘l.l’& ._.l'o. .l.

y ® n ' -
A U OAE A MM e, Y

‘\‘:‘t’-‘l‘

LA
’l.l

e 2 T

Y

UNCLASSIFIED

process at a waiting node where the signal is not expected, the signal is discarded. Signals
may carry a priority, which affects the relative order of their acceptance by a receiving
process.

Using G, the system designer specifies communication with a process's external
environment with an "environment list". External objects being read from and/or written
to, external signals being sent or received, and external procedures being called are
specified in the environment list. The environment list appears on the top level box of the

process, as signal identifiers with formal declarations separable into an interface document,
as in Figure 3.

Timing and timing constraints are defined in one of two ways. The first way is to
specify that a signal sent from a process must not be received until an absolute time (for
example, on January 1st, 1988 at 1:00 pm) or a relatively specified time (for example, until
3 seconds has elapsed since sending or receiving a signal).

The second way is to specify that a process waits for one of a number (possibly
zero) of specified (types of) signals to arrive and if no such signal arrives within an
absolutely or relatively specified time, a specified action is taken.

The first type is typically used to represent periodically repeated functions; whereas
the second is typically used to represent constraints. In Figure 4, the action networks for
the supervisor control buttons (elevs_supervisor) and the passenger request buttons
(passenger_req) processes specify a random time (random minutes) to wait before sending
the signals, new_sratus and stop_req respectively.

G makes no special provisions for specifying the architecture or hardware of the
underlying execution environment for a designed system. G itself could be used as a
hardware description language. However, there are no mechanisms for tying the hardware
so described to a software system also described in G; i.e., to assign software units or
objects to hardware components.

The environment ASA provides for "growing" G-trees (AUTO-G) is adequate
(although wearing). Figure S provides an example of an icon menu used by the designer
for generated trees. Currently, ASA is developing support within the AUTO-G
environment for simulation of designs in G or T hosted on the SofChip Processor (ASA's
proprietary multi-processor architecture). Further, ASA is finishing work on G-to-
SADMT and G-to-C translators; the Rogel Military College is developing a G-to-Ada
translator under ASA's auspices (anticipated for early 1988).

A-22
UNCLASSIFIED

i .58 > -~ O N W% N N L .‘-"..‘A.‘;’"!‘»-
SN Y !u'!!\‘!,n'ﬂ\"..c' Looh 5 v Ot Caada

.

yuJ

“abavat Vutnv g

POV AUV

W L/

el

¢, 8" &Y

UNCLASSIFIED

,.',."o.h‘..'. " ll-. EXA o R rﬂ.v".ll o X, ” - Yy
C R JAAAARCRAL i _.o.ﬂnf.ru.m.ﬁ.m.. o u&ﬂu..r - .1MV«N¢@M\,% d
PRI

g aw o

-

X a7 i - - v b A
W TN . S] PPy Prassss P

mop ‘ubly
8s3Jdx8
[u 1]

TS TORG I
a..%o: sapn|du}) : & (559.dxa’ | eWIOU‘IN0) 185

SN}els 83jAJES ABU

pue Jequnu .o)eAe|®
Buia)6 ebessew

shyeyE Wy /V

&-0-&
™
e
. T
-

)

~

~

-

bet

Leved~Jadns yuojieui)sep

ysenbey Buypueog
pesp jo Leubis uP.DG-.S—S

40Q8NY J0OY J i Jooy y~doys
_ M:z..:un.._ 188 : !
Ts--. a) _ 1senbes doys mmﬂl? «1l

012\ Unee0)

wayshs 0)
pUTL UL FIRU: |

e
p
ueesosdun

g 2iEa|A

Figure 3 - Process environment list

A-23
UNCLASSIFIED

9 g%

g,

025 82 2% 2" 00 00

R A%

~ o -

BSASSES

E o) .,.. A

: AR, X y
DRI Y iy o XY

S

. - e

shh EG d

..I..y S RN
IR AP AP0y

. o »

\.ﬁ [Taty -hl--lf

A

d.-.rp-f.\-u

oSS

LR AR

UNCLASSIFIED

. A

TIATSS
#S00Yd 0) vOINg
seysnd Jepoeog

bas-doysd

uolINg s8Yys

Jefuessed sn1e38 ALY

Joj ebueyd s

I

o doad

basBuipJseoq
bas~dors
SN)eIS ALY

S9INULS Sopued

T

F{
JUBEUOIfAU]

1U3eU0 J1AU]
J010A01 3

o

¢

»

Interface document content

Figure 4

-

f.o.... -
PN oAl XS SR

e

s

A-24
UNCLASSIFIED

s
‘5 % Ya s

LS A A5 S A]

»

ARSI

P
_\F,‘J'J'f

-'-

a

o ity

Ml

N a_l () : .n : ?

v
s "‘.I M

'(I
LN

in LJ
A%

-

W
8100 0, W0 at b

"

s Bog |

s]

0,00

R
aled,

5.0 B (30 "
.l'..l’. 0. %9,

00,

e e -, ™ - P i g T e e
& Y P T - - IR AL, ¢ L al e 4] Ll h ST P
Pl N A i T s LA 4 ek ol s B M S .vv -, A0 2P e I P N &’
ORI SR @ SN LATA Ly L o P NARAANAN 1 L o
A SRR - 3 ;--f\hn\!;fﬂ .:--N;-&v-u-i.- O p - AN & PR oy ! s
Sl Sl D o .n‘-.-\, e Sy AN ﬁ A -.nl.- PR ffhtnt.--.u' » 2 P
SENNN, EXEXESS L LSELIICs srn e, et NN RS DA M SAL R IR L

)
“u
"y

X
o

LSRN \.f

f‘.'f ..f- N

(2

1av
fl
-

)

a

8uo jo sniels
S9)}NU{N WopueJs

ﬁu-.. bau~Bujpieoq % yspuodes mopuel

P A A A AN

-"\-.

e,

’F

3
>
[
-
-
-

ATliey it

K

R 'S

QLLYTE: ouD
J04 sfueys smers ysenbay o)
uojing saysnd
Jos jasedng

4

voyng seysnd

#S00Y) 0) UOYING
Jobuassed

soysnd Jepueoq

.l

basdors $n3e3STAIUY

e

-~

]

imer icons

bes~Buipaeog
bes~doys o(doey .
SRIELSTASU. H

“
L]
B 7

JURUD I |AUT T

UNCLASSIFIED
-T
A-25
UNCLASSIFIED

Figure 5

Juseu0I AT
J0yeas| 3

. \\a\;’._'ﬁ.\ e

L
A

-

o

>

SN
.!l "-h

"N
304

R AN

R P RARR AT YU W

UNCLASSIFIED

Distributed Computer Design System: DCDS
(TRW and U.S. Army Strategic Defense Command)

DCDS (Distributed Computing Design System) was developed by TRW under 'y
contract with the U. S. Army Strategic Defense Command. The primary purpose of DCDS R
is to develop complete and consistent requirements to provide a foundation for systems 5:5 by
development. DCDS has behind it approximately twelve years of development and use on]
defense projects, dating back to the original SREM system. Two versions of DCDS are Q '
being used at this time: a Pascal language version which is being phased out, and an Ada w3
language version which is being beta-tested on the VAX 8600 and the IBM PC-AT. In
J addition, TRW is developing a simulator to support the first stage of the system
development cycle (i.e., System Requirements Engineering Method) based on generated ”x
Ada.

g e g S e

DCDS embodies five different design methods and five corresponding design
languages:

1) System Requirements Engineering Method SSL - System Engineering Language,

defines systems and their function.

2) Software Requirements Engineering Method RSL - Software Requirements B
Engineering Language, defines
requirements of S/W.

3) Distributed Design Method DDL - Distributed Design Language,

defines architecture of H/W and S/W.

4) Module Development Method MDL - Module Development Language,

defines units of program code.

5) Test Support Method TSL - Test Support Language, for

testing.

A-26
UNCLASSIFIED

TSI YN

— : PP . e ol A2 e e ot et e a e s’ PRI IR © hat o e 0t Sat St A Bat Ra® &8 ‘g X
POOLUTRA MR T, TR) u 42 e ™ . - - - \ A . 5

r
(B2

UNCLASSIFIED o

" O

Each of these methods views the system at a different level of detail. Currently, ':::},

DCDS supports textual versions of all the languages, but System Specification Language T2y

(SSL) and Requirements Specification Language (RSL) are the only languages that have N
graphics editors. ‘.'::xl"‘

e

In DCDS, the designer first names the system and its subsystems, and then uses "'l:::-:!:

Functional Networks (F_nets) to define a functional model of the system. This : :__-\.; 4

decomposition defines a hierarchy of functions and is done using the System Requiremeunts .-:';:Z: "

Fngineering Method (SYSREM). The designer formally defines the system as the top level -:—':j

function within a F_net. An F_net is used to define the decomposition of a function into e ;;'f '

sub-functions. AR

s

. . . o AT

At the next stage of design, using Software Requirements Engineering Method ! l‘c,:j

(SREM), the designer works from the Input Interfaces of the primitive functions within the =V 5 ‘

F_net which manipulate data. For each such Input Interface, the designer will define a ey

Requirement Network (R_net). An R_net is a directed graph defining the flow of control .:‘\:“

between Alphas (small grain functions) and specifies the system response to events and \,3 o

input messages. R_nets also specify the production of output messages. Inputs and iy

outputs defined in thc R_net must be consistent with the Input Interface and Output ;~:.,-_":-j

Interface for the corresponding function of the F_net. :‘:::,E_, ‘
TR

Each R_net defines a separate thread of control and hence, a process. R_nets N
communicate via shared data, that is, variables, files, and so on. An underlying operating T

system is assumed to manage this process. Using the Distributed Design Method (DDM), -;E::':: .

the designer will "cluster" Alphas from different R_nets into single processes for optimal :ﬁ:::‘:’j .i

hardware assignments. RV

v

Input and outpu. data are defined with Item Networks (I_nets). These networks are ;i'?:

used to represent the time sequence and arrangement of data (items). x;.': ',.

Lehah!

At the SREM level, the designer can use Assertion Nodes within I_nets to specify
boolean expressions relating items in the network. The Assertion is evaluated in the
context of the related F_net and an exception is raised if the boolean expression is false.

A-27
UNCLASSIFIED

e e e, e eiege, e, e P T TV N N T AN N YR PR e T T S PR WL W e s
'v ‘a,- -,v_.n'.,_- ‘J".’f '.._,'."\'_. 'PJ .rgl _-."-., f'--{f. ¥) f. LGP iy A A A A .J’ LS WS v, o

."\ N

Lot

y

UNCLASSIFIED

Timing constraints also may be specified at the SREM level by the use of Validation
Paths. Within the R_net, the designer may add Validation Point nodes which can be used
to specify different Validation Paths within the network. Using Performance
Requirements, specific timing constraints can be defined for specific paths within the
R_nets. Additionally, DCDS provides the XQT Estimate construct to specify timing
constraints for individual blocks of code.

DDM allows the designer to specify the architecture of the host environment for the
data processing portion of the system. This method includes the specification of the
execution environment from a geographical basis down to a single processor basis. The
hardware design is divided into three levels: Level One is concerned with distributed data
processing over a connected network of geographically separate nodes; Level Two is
concerned with the internal architecture of individual nodes; and Level Three is concerned
with the internal design of computer systems which are based on a common architecture
(i.., Level Two designs may include different types of processors integrated by a common

network). The designer allocates specific software objects to specific hardware
components.

The principal goal of the DDM is the analysis of Alphas within R_nets to arrive at
an optimal "clustering” into Tasks. The primary measure of optimality is the assignment of
Tasks and the data they manipulate to the same processing nodes. Additionally, it is
important to cluster Alphas within the same flow of control (i.e., R_nets) to the Tasks and
hence, the same processing nodes. DCDS Processes manage the execution of Tasks.

Module Development Method (MDM) is used for developing algorithms, and for
defining a detailed design from the requirements and specifications that were developed at
the SSL., RSL, and DDL levels. Units of tested code are produced using the Module
Development Language (MDL).

As soon as a design is completed in a particular language, the design is then

translated into the next language in the design cycle (ie., SSL to RSL, RSL to DDL, and
DDL to MDL).

A-28
UNCLASSIFIED

Fai
YWY W e = -&',';5,"" o

vy

L

S

- .':'-',\ 3

¥

Vi %

T

S

~SA

."- [9% 4 lq'.'4'."~'

o]

UNCLASSIFIED

A
Currently, TRW has an environment to support system development using DCDS. N :::’ ‘:
| The tools in this environment include: WOXH

S 3y
.-
2T

- Editors to support the use of a graphical language for designing F_nets, R_nets,
and I_nets.

- Editors to enter textual information.

- Aneditor for changing, adding or deleting an entity, attribute or relations. e

- Consistency and completeness checkers. Ay

- A query system to request information about components of the system. Z"':"}' .

o«
X,
S

L2

75

A simulator supporting SYSREM is available as of November 1987. The simulator

will produce an Ada programming language representation of a designed system, for
simulation.

%]

Gox
S
w4

% SN
l. -
s
7 EALS

A
23
2o
- -

22
L

S e
ﬁ-‘}?
%Y
L

%

A-29 ")
UNCLASSIFIED oy

T T O I T T P R N N e TR IR T L P E T P N R T R L LA T T . ~3% "
G T, G (R e A Gy L R AR R S TR L R CH R RN Pl

e
3 -
L T o By agl

aZe3v

CH N W TR

TRO R

- . PP R PP PR VORI PRGN ANy VR TOIF TSy PUN PAPR YOI PR UYL PLF LN e Vg PR 1) J - % & .
AU W TN - MUt gty ! WX 00" 0 4 ¥ ‘L ath gigngt . N ¥

- W WL

UNCLASSIFIED

Software Through Pictures
by
Interactive Development Environments, Inc.

Software Through Pictures (abbreviated STP in this report) was used by IDA on
the Sun 3 workstation. Software Through Pictures offers a collection of tools representing

the data flow diagramming methodology espoused by Yourdon, DeMarco, Gane, Sarson,
Ward, Hatley, and other published authors.

IDEtool is the interactive graphical tool that provides the user with a siugle interface
for accessing and executing all of the tools provided in the STP environment. It utilizes the

windowing system of the host machine, and provides a convenient icon, menu and mouse
system for direct interaction with the user.

When invoked, IDEtool displays a startup window offering the highest level of user
options. Figure 1 shows this window. The available tools include the Data Flow Editor
(DFE), Data Structure Editor (DSE), Transition Diagram Editor (TDE), State Transition
Editor (STE), Entity Relationship Editor (ERE), Structure Chart Editor (SCE), Control
Structure Editor (CSE), and PICture (PCT). Typically, a user selects an editor or
command group, a subcommand and the desired options, then selects the "Execute” button
to cause that command to be executed. If a graphical editor, such as DFE, is chosen, a
separate editor window is created, leaving the IDEtool window available for input of
additional commands. In other cases, a separate program is executed, and the output is
placed in the teletype area at the bottom of the IDEtool window.

Information is entered into the data dictionary (the text part of the design data base)
via the graphical editors or by a Unix text editor of the user's choice. (Diagrams and text
are separated in the database.) Each of these can be invoked directly from the startup
window, causing a new window in which the chosen editor can be used to create or edit a
diagram. As with the startup window, each editor window has several regions. A typical
window is shown in Figure 2.

A-30
UNCLASSIFIED

'\\‘-'v\'

'\‘-x'.),,_‘ -\'.._-\ - e

N SN

,f.rr.ra.-'.-